2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市南匯一中數(shù)學高三第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.2.二項式展開式中,項的系數(shù)為()A. B. C. D.3.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.4.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.325.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.6.設分別為的三邊的中點,則()A. B. C. D.7.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.8.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.410.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.11.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.12.已知,則()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上恰有4個不同的零點,則正數(shù)的取值范圍是______.14.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.15.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).16.如果拋物線上一點到準線的距離是6,那么______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,,.(1)求的值;(2)求的值.18.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.19.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,證明:對;(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。20.(12分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標,國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.21.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經(jīng)過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

由可得,故可求的值.【題目詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【題目點撥】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.2、D【解題分析】

寫出二項式的通項公式,再分析的系數(shù)求解即可.【題目詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【題目點撥】本題主要考查了二項式定理的運算,屬于基礎題.3、B【解題分析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【題目詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【題目點撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.4、B【解題分析】

由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!绢}目詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!绢}目點撥】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解。5、B【解題分析】

根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【題目詳解】由,得,所以.故選:B【題目點撥】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.6、B【解題分析】

根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【題目詳解】根據(jù)題意,可得幾何關系如下圖所示:,故選:B【題目點撥】本題考查了向量加法的線性運算,屬于基礎題.7、A【解題分析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【題目詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【題目點撥】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應用,屬于中檔題8、A【解題分析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【題目詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【題目點撥】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.9、C【解題分析】

根據(jù)對稱性即可求出答案.【題目詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【題目點撥】本題主要考查函數(shù)的對稱性的應用,屬于中檔題.10、A【解題分析】

作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【題目詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【題目點撥】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.11、D【解題分析】

根據(jù)拋物線的定義,結(jié)合,求出的坐標,然后求出的斜率即可.【題目詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【題目點撥】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.12、A【解題分析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【題目詳解】,;;故選:.【題目點撥】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質(zhì),是基礎題,解題時注意函數(shù)性質(zhì)的合理應用.二、填空題:本題共4小題,每小題5分,共20分。13、;【解題分析】

求出函數(shù)的零點,讓正數(shù)零點從小到大排列,第三個正數(shù)零點落在區(qū)間上,第四個零點在區(qū)間外即可.【題目詳解】由,得,,,,∵,∴,解得.故答案為:.【題目點撥】本題考查函數(shù)的零點,根據(jù)正弦函數(shù)性質(zhì)求出函數(shù)零點,然后題意,把正數(shù)零點從小到大排列,由于0已經(jīng)是一個零點,因此只有前3個零點在區(qū)間上.由此可得的不等關系,從而得出結(jié)論,本題解法屬于中檔題.14、【解題分析】

由題意可知:,且,從而可得值.【題目詳解】由題意可知:∴,即,∴故答案為:【題目點撥】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、必要不充分【解題分析】

先求解直線l1與直線l2平行的等價條件,然后進行判斷.【題目詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【題目點撥】本題主要考查充分必要條件的判定,把已知條件進行等價轉(zhuǎn)化是求解這類問題的關鍵,側(cè)重考查邏輯推理的核心素養(yǎng).16、【解題分析】

先求出拋物線的準線方程,然后根據(jù)點到準線的距離為6,列出,直接求出結(jié)果.【題目詳解】拋物線的準線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【題目點撥】本小題主要考查拋物線的定義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)先利用同角的三角函數(shù)關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【題目詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【題目點撥】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關系的應用,考查運算能力.18、(1)見解析(2)見解析【解題分析】(1)建立如圖所示的空間直角坐標系,設AC∩BD=N,連結(jié)NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.19、(1)見證明;(2)【解題分析】

(1)利用導數(shù)說明函數(shù)的單調(diào)性,進而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問題轉(zhuǎn)化為導函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點存在定理說明函數(shù)存在極值.【題目詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當時,,為上的減函數(shù);當時,,為上的增函數(shù);所以為函數(shù)的極小值點;②當時,在上成立,所以在上單調(diào)遞增,所以在上沒有極值;③當時,在上成立,所以在上單調(diào)遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點.即在上存在零點.設,,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域為,所以,當實數(shù)時,在上存在零點.下面證明,當時,函數(shù)在上存在極值.事實上,當時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當時,,為上的減函數(shù);當時,,為上的增函數(shù);即為函數(shù)的極小值點.綜上所述,當時,函數(shù)在上存在極值.【題目點撥】本題考查利用導數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導數(shù)的應用,函數(shù)的最值的求法,考查構(gòu)造法的應用,是一道綜合題.20、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解題分析】

(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【題目詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數(shù)為:人,設從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【題目點撥】本題主要考查互斥事件、隨機事件的概

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論