




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
高三數(shù)學(xué)重要知識點總結(jié)五篇高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第1頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第1頁。總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,快快來寫一份總結(jié)吧??偨Y(jié)一般是怎么寫的呢?下面是小編為大家收集的高三數(shù)學(xué)重要知識點總結(jié)五篇,僅供參考,歡迎大家閱讀。高三數(shù)學(xué)重要知識點總結(jié)五篇1①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形。⑶特殊棱錐的頂點在底面的射影位置:①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心。②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心。④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心。⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心。⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;⑧每個四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。[注]:高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第2頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第2頁。ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。簡證:AB⊥CD,AC⊥BDBC⊥AD。令得,已知則。iii、空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形。iv、若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形。簡證:取AC中點,則平面90°易知EFGH為平行四邊形EFGH為長方形。若對角線等,則為正方形。高三數(shù)學(xué)重要知識點總結(jié)五篇21、課程內(nèi)容:必修課程由5個模塊組成:必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:算法初步、統(tǒng)計、概率。必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。必修5:解三角形、數(shù)列、不等式。以上是每一個高中學(xué)生所必須學(xué)習(xí)的。上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應(yīng)用,而不在技巧與難度上做過高的要求。此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。2、重難點及考點:重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)難點:函數(shù)、圓錐曲線高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第3頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第3頁。⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用⑸平面向量:有關(guān)概念與初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用⒀復(fù)數(shù):復(fù)數(shù)的概念與運算高三數(shù)學(xué)重要知識點總結(jié)五篇3(1)先看“充分條件和必要條件”當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的必要條件呢?事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第4頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第4頁。(2)再看“充要條件”若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q?;貞浺幌鲁踔袑W(xué)過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B?!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。(3)定義與充要條件數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示?!俺湟獥l件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。高三數(shù)學(xué)重要知識點總結(jié)五篇4(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第5頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第5頁。定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第6頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第6頁。②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的'頂點;③側(cè)面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。高三數(shù)學(xué)重要知識點總結(jié)五篇51、函數(shù)的奇偶性(1)若f(x)是偶函數(shù),那么f(x)=f(—x);(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2、復(fù)合函數(shù)的有關(guān)問題(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第7頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第7頁。(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;3、函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對稱;4、函數(shù)的周期性(1)y=f(x)對x∈R時,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);(6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);5、方程k=f(x)有解k∈D(D為f(x)的值域);6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第8頁。高三數(shù)學(xué)重要知識點總結(jié)五篇全文共8頁,當(dāng)前為第8頁。7、(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符號由口訣“同正異負(fù)”記憶;(4)alogaN=N(a>0,a≠1,N>0);8、判斷對應(yīng)是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 助力備考2025年注冊會計師考試資源試題及答案
- 高性能轎車短期出租協(xié)議
- 2025年注冊會計師考試應(yīng)對壓力的有效方法試題及答案
- 財務(wù)分析在決策中的重要性試題及答案
- 加強新員工融入的工作措施計劃
- 國際金融理財師考試另類投資方式試題及答案
- 注會考試中案例題的解析技巧與試題及答案
- 證券從業(yè)資格證的復(fù)習(xí)試題及答案
- 解析交易規(guī)則的證券從業(yè)資格證考試試題及答案
- 證券從業(yè)資格證考試體系化整合知識試題及答案
- 廣東省2024-2025學(xué)年佛山市普通高中教學(xué)質(zhì)量檢測物理試卷及答案(二)高三試卷(佛山二模)
- 防水工程施工方案屋面防水施工的施工工藝
- 【9數(shù)一?!?025年安徽合肥市第四十五中學(xué)九年級中考一模數(shù)學(xué)試卷(含答案)
- 國家民政部所屬單位招聘筆試真題2024
- 2024年安徽馬鞍山技師學(xué)院專任教師招聘真題
- 2025年濟源職業(yè)技術(shù)學(xué)院高職單招語文2019-2024歷年真題考點試卷含答案解析
- 專題03 古今中外科技成就(測試)(解析版)
- 設(shè)計服務(wù)費用合同(2025年版)
- 廣數(shù)980TDA詳細(xì)說明書
- 2025年安徽國際商務(wù)職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫完整版
- 2024年新高考廣西高考生物真題試卷及答案
評論
0/150
提交評論