電子信息工程外文翻譯-使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮_第1頁
電子信息工程外文翻譯-使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮_第2頁
電子信息工程外文翻譯-使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮_第3頁
電子信息工程外文翻譯-使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮_第4頁
電子信息工程外文翻譯-使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

附錄B外文參考文獻(xiàn)LosslessImageCompressionwithLossyImageUsingAdaptivePredictionandArithmeticCodingSeishiTakaandMikioTakagiInstituteofIndustrialScience,UniversityofTokyoAbstractLosslessgrayscaleimagecompressionisnecessaryinmanypurposes,suchasmedicalimage,imagedatabaseandsoon.Lossyimageisimportantaswell,becauseofitshighcompressionratio.Inthispaper,weproposeaLosslessimagecompressionSchemeusingalossyimagegeneratedwithPEG-DCTscheme.Ourconceptis,sendaPEG-compressedlossyimageprimary,thensendresidualinformationandreconstructtheoriginalimageusingboththelossyimageandresidualinformation.3-dimensionaladaptivepredictionandanadaptivearithmeticcodingareused,whichfullyusesthestatisticalparameterofdistributionofsymbolsource.Theoptimalnumberofneighborpixelsandlossypixelsusedforpredictionisdiscussed.ThecompressionratioisbetterthanpreviousworkandquiteclosetotheoriginallyLosslessalgorithm.IntroductionTodaytherearemanystudiesonimagecompression,particularlyonlossyandverylowbitratecompression.Forimagedatabase,suchhighcompressionratioisImportantforstorageandalsoforquicktransmission,buttodealwithvariouskindsofusersdemand,Losslessimagetransmissionisindispensable.Inthispaper,weproposeaneffectiveLosslesscompressionalgorithmforgrayimageusinglossycompressedimage.ThelossycompressionschemeusestheJointPhotographicExpertsGroupdiscretecosinetransform(PEG-DCT)algorithmasthelossycodingalgorithm.Firstwesearchthesimilarpairsofpixels(conlexts),accordingtotheirneighborpixels.Forsuchpixelswhichhavecontexts,wepredicttheirvaluesfromthecontextsandtheneighbors.Ontheotherhand,foreachpixelwhichdoesn'thaveitscontextpairs,wecalculatetheedgelevelaccordingtothedifferenceofadjacentpixelvalues.Foreachedgelevelofpixels,wecalculatethepredictivecoefficientsoflinearcombinationundertheleastsquareerrorcriterion.Notonlythepixelswhichhavealreadyprocessedbutalsothepixelsofthelossyimageisusedforprediction.Foreverypixel,thedifferencebetweenpredictedvalueandrealvalueiscalculated,andthedifferenceisconvertedtoanon-negativevaluebeforebeingencoded,accordingtotheirdistribution.Inentropycodingstage,weusethearithmeticcoding.Itismadeadaptive,andinitialerrordistributionisgivenonlybyoneparameter,whichisspecificforeachedgelevel'sstatisticaldistribution.Thepixelsbelongingtothedifferenceedgelevelsareencodedindependently.Experimentalresultsandgoodperformanceareshown.LiketheotherLPL(L0ssyPlusLossless)approaches,ourcompressionratioislessthanthatoforiginallyLosslessscheme,butthedifferenceisslight.Ofallthings,however,usersgetthegreatmeritThattheycanbrowsetheimagebeforetheLosslessdecompression.Manysuchschemeshavebeenproposedintheliterature,butmostofthemtreatthelossyimageanditsLosslessresidualasindependentsymbolsource.OneoftheexceptionsisMemon’salgorithm[6].Weutilizethelossydatathoroughly,andmuchbetterresultisobtained.1.1PixelestimationNormallytheimagedataisscannedalongthescan-linedirection.Infigure1.currentpixelisprocessedpixelsare.OrdinalpixelestimationmethodpredictstheNFL,valueofcurrentpixelusingPI...P4.Thencalculatethepredictionerrore=-.Normallythelinearcombinationisusedforpredictionasfollows,whereTI...T4arethecoefficients.ThisFigure1:Currentpixelistheextrapolativecessedneighborpixels=(1)Usually,thezero-orderentropyofset{e}islowerthanthatofset{z}.Therefore,afterentropycodingschemesuchasHuffmancoding[l]orArithmeticcoding[2]orLempel-Zivcoding[3],datasizeisreduced.Principally,wealsousethelinearcombinationlikeequation(1)forprediction,buttheprocessismoreadaptivethannormalpredictionmethod.Andweusemoreneighborpixels(uptoten),alsousingthepixelsoflossyimageandpredictionerroreisconvertedtoanotherformbeforeencoding.2.1GroupingthepixelsEachimagepixelhasdifferentpropertyundercertaincriterion.Fromapointofimagecompression,groupingsimilarpixelsandencodethemtogethercauseseffectiveresult.Forgroupingthepixels,weusetheQvalue:Q=(2)UsingthisQvalue,weclassifyeachpixelintoseveralgroupsaccordingtotable1Table1:GroupingtableFigure2:(a)Originalimage‘Girl’and(b)JPEGcompressedimage(qua1ityvalue=5)Figure3:(a)ImageofQvalue,(b)ImageofpredictionerrorofsimplepredictionFigure3(a)showstheQvalueand(b)showstheerrorofsimpleprediction.Ascanbeseenfromthem,thevalueQcorrelatecloselywiththepredictionerror.Thereforethepredictioncoefficientsarecalculatedindependentlyineachgroup.2.2ContextsearchTable2showseachgroup’sfinalzero-orderentropyofpredictionresultofimage‘Girl’.Obviously,theuppergroupsaremoredifficulttobecompressedthanthelowergroups.Weusethecontext-basedpredictionmethodtodealwithsuchuppergroups.Theregionwherewesearchthesimilararea(wedenotethis“context〞)isshowninfigure4.Thisisrestrictedwithinalreadyprocessedpixels’area.TheprocedureisDescribedbelow:1.Scantheareaandfindpointsthatsatisfyand(3)2.Withinsuchpoints,findonethatminimizes(4)3.IftheCminissmallerthan12,treatitasthecontextofthecurrentpoint.Otherwise,returnfailure(notfound).2.3Prediction2.3.1PredictionofnormalgroupsForeachgroup,wepredictthevalueofacurrentpixelbylinearcombinationofitsneighbors’pixelvalues.Thecoefficientsarecalculatedbyleastsquareerrormethod.Theneighborpixelsusedforpredictionareshowninfigure5(Pi...Pia).Numberofpixelsarevariable(upto10pixels),andafterwardswewillchooseitoptimumly.Thepriorityisshownbythesuffixnumberinthefigure.Themosteffectivenumberwillbediscussedlater.Table2:GroupV.S.Entropy(image‘Girl’)Figure4:Context-searchregionFigure5:PixelsusedforpredictionHere,someofthelossypixels(RI...&,)gotfromPEG-compressedimageareAlsoused.Usingthesepixels,somethinglikeinterpolativepredictionisachieved.Thispredictioncontributesthereductionofcompressedsize.2.3.2PredictionofcontextUnderthecriterionofcondition(3)and(4).apairofcontexthavethesimilarshapesofheight.Therefore,wepredictthevalue2from{a’,b’,c‘,z‘,a,b,c}(seefigure4).Wealsousetheleastsquareerrorestimation.Themostdifferentpointfrompredictionofnon-contextpixelsis,notonlyusingthevaluesofneighborpixelsbutalsousingtheclosestcontext.Thisschemeiseffectiveforcontinuousedges,becausenearbyanedgethereisasequenceofsimilarlookingpixels.2.4ErrorconversionIfeachpixelhas8bits,thepredictionerrore=-canhavetherealnumberbetween-255and+255(roughly).Afterprediction,eshouldbeexpressedasaninteger.Oneeasywayforconversionis,simplyroundthevalueofftheinteger(calculateLe+0.51)andconsideritasthe2’scomplement8-bitnumber.OurconversionalgorithmistotallybasedonTaniguchi’smethod[5].Afterthisconversion,wecanalsogetthe8-bitnon-negativeintegerE.Firstweobtaintheupperandlowerboundofthegroup(max,min).Then,accordingtothefigure6,converttheactualpixelvalueintointeger.(Inthisfigure,ifactualpixelisequalto“ax’,E=9.)Foreachgroup,wegetthemaximumandminimumpixelvalueandconvertthepredictionerrorrespectively.Thisconversionisreversible.fyougetthepredictedvalueandtheconvertednumberE(andalsoupperandlowerbound),youcanobtaintheactualpixelvaluefromsimilarnumericalline.2.5Adaptivearithmeticcoding2.5.1FittingofthedistributionofEAccordingtotheexperimentalresult,thedistributionofE(figure7(a)),aftererrorconversion,looksveryclosetotherighthalfofaGaussiandistribution:(5)Figure6:Algorithmoferrorconversion(example)Figure7:(a)DistributionofE(image=‘Moon’),(b)FittingofEwherethevarianceis.Asthisdistributionislimitedrighthalf,isequalto,whereNisthenumberofsamples.Thefittingline(estimatedfrequency)ofE’sdistributionisCalculated.Theirgraphsareshowninfigure7(b).YoucanseethatusingthisGaussianmodel,thedistributionofEisapproximatedwell.2.5.2AdaptivearithmeticcodingTheprobabilitydensityfunctionofthisfittingcurvecanbeexpressedbyonlyoneparameter.Thisdistributionisusedtogeneratetheinitialdistributiontableforencoder(andalsoordecoder),insteadofpassingthelargeamountofactualfrequencytable.Forthispurpose,arithmeticcodingisverysuitable.Forthispurpose,ourcoderismadeadaptive,eachsymbolfromthedatastreamrenewsthefrequencytable.Byusingandadaptivearithmeticcoder,evensmallamountofdataiscodedwithhighcodingrate.ExperimentalResultsTogeneratealossyimage,weadopttheJPEGcompressionscheme.ThereasonisthatPEGisthestandardschemeforstillimagecompressionanduserscar1findPEG-toolseasily.Weusethetoolsnamed‘cjpeg’and‘djpeg’,whichistheproductsofIndependentPEGGroup.TocreatethePEGimage,cjpeg-qualityquality-value-optimizefilenameandtodecompressthePEGfile,djpegipeg-fileisinvoked.Theoption’-optimizeperformsoptimizationofentropyencodingparameters.ItusuallymakesthePEGfilealittlesmaller.‘djpeg’hastheoptionTable3:Effectofcontextsearch(N=9,NL4,quality=5)‘blocksmooth’,whichperformscross-blocksmoothing,butfromexperimentalresults,itmadethecompressionratioworse,thereforethisoptionisnotused.Parameterswhicharenecessaryfordecompressionareputtogetherandalsoencodedbyadaptivearithmeticcoder.Onlyseveralpercentcompressionisachieved,butbetterthandoingnothing.3.1EffectofcontextsearchWeusethreetestimages‘Girl’,‘Couple’and‘Moon’,whicharechosenfromSIDBA(StandardImageDataBase).Fortheseimages,thebitrateofcompressingwithandwithoutcontextsearchiscompared.Theresultsareshownintable3.NListhenumberoflossypixelsusedforprediction.NisthenumberofLosslessneighborpixels.3.2EffectofthequalityvalueoncompressionratioPEGprovidesafinetuningfactor(qualityvalue),whichcorrespondstodifferentQualitiesofthecompressedimages.Fortypicalimagedata,alowqualityvaluesuchas20provideshighcompressionwithpoorimagefidelity.Asthequalityvalueincreasesthefidelityimprovesattheexpenseofcompressionratio.Figure8showsthebitrateandqualityvalue.Asthequalityvaluedecreases,thetotalbitratedecreases,too.Laterweusetheimagequalityvalueof5,whichisenoughforunderstandingtheimageroughly(seefigure2(b)).Figure8:BitrateV.S.QualityvalueFigure9:BitrateV.S.NL(N=10,(N=10,-9,images‘Gir1’)quality=5,image=‘Girl’)Table4:Resultofbitrate(quality=5,N=9,NL=4)3.3EffectofusingalossyimageTheremightbeadoubtthatthelossyimagelookssimilarwiththeoriginaltooureyes,butdiffersmuchfromastandpointofpixel-value,thereforeithardlyhelpstheprediction.Figure9showsthebitrateandthenumberoflossypixelsusedforprediction(NL).Fromthisfigure,itisknowneventhepoorimage(quality=5)helpsthecompressionratioconsiderably.ThereasonwhythebitrateincreasesgraduallywhereNLisgreaterthan4is,thatadditionalparameter(coefficients)isnecessaryforeachpixelposition.TheoptimumNLis4.MoreoverweconductedexperimentstofindtheoptimumnumberofN.andobtained9.3.4ComparisonwiththeothermethodsTable4showstheresultofthecompression.Taniguchi’smethod[5]isoriginallyLosslessorientedone,thereforetheresultsareslightlybetterthanours.Inourmethod,NandNLaresetoptimally.MAWmethodisproposedbyMemon[6].ItalsousesalossyPEGimagetoreconstructaLosslessimage.Ourresultisabout0.5bit/pelbetterthanMAW,and0.03to0.12bid\pelworsethanTaniguchi’smethod.AstheMAW’Sresultisgivenonlybyentropy,thedifferenceofperformancefromoursmightbebigger.ConclusionInthispaper,weproposedthealgorithmofLosslessimagecompression.Unlikeotherliteratures,wehavediscussednotonlytheentropyofresidual,buthowtoencodeitefficientlyandthefinalsizeofthecompressedproduct.ThisprovidesanattractiveoptioninapplicationsthathaveneedforquicktransmissionontheonehandandexactReconstructionontheother.Furthermore,usingthislossyimagethoroughly,thetotalbitrateisconsiderablylow.Searchingthecontextsandusingitforpredictionisprovedtowork.Wewillresearchmoreeffectivewayofusingcontext.OuralgorithmisapplicablefororiginallyLosslessorientedone(notusinglossyimage).Insomeimages,wehaveobtainedbetterresultsthanTaniguchi’smethod.Weareproceedingtheinvestigationinthisstandpoint.WeareexaminingifthereisamoresuitablealgorithmforlossycompressionotherthanPEG.AndalsospeculatingthemoreaccurateerrordistributionfittingotherthanGaussianmodel.References[11D.A.Huffman:“Amethodfortheconstructionofminimumredundancycodes〞,ProceedingsofIRE40,pp.411420,1951[2]J.J.Rissanenetal.:“Arithmeticcoding〞,IBMJournalorResearchandDevelopment,23(2),pp.188-193,1976[3]J.ZivandA.Lempel:“AUniversalAlgorithmforSequentialDataCompression〞,IEEETransactionsonInformationTheory,IT-23(3),pp.337-343,May1997[4]PaulG.HowardandJeffereyScottVitter:“NewMethodsforLosslessImageCompressionUsingArithmeticCoding〞,ProceedingsofDataCompressionConference’91,pp.257-266.1991[5]TakayukiTaniguchietal.:“Variable-Length-Code-SelectiveReversiblePredictiveCodingforMulti-LevelImages〞,TheTransactionsoftheInstituteofElectronics,InformationandCommunicationEngineers,Vol.J70-B,pp.654-663,Jun.1987[6]NasirD.Memonetal.:“SimplemethodforenhancingtheperformanceoflossyplusLosslessimagecompressionschemes〞,JournalofElectronicImaging2(3),pp.245-252,Jul.1993[71DmitryA.Novik:“CompressionThroughDecompressionintoBrowseandResidualImages〞,Proceedingsof1993SpaceandEarthScienceDataCompressionWorkshop,NASAConferencePublication3191,pp.7-12,Apr.1993使用自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的有損圖像的無損壓縮摘要多用無損灰度圖像壓縮是必要的,如醫(yī)學(xué)圖像,圖像數(shù)據(jù)庫等。有損圖像很重要,因為其具有較高的壓縮比。在本文中,我們提出了一種無損圖像壓縮,使用JEPG-DCT方案產(chǎn)生的有損圖像格式。我們的主題是,將JEPG壓縮有損形象性,然后把剩余的信息,并使用有損圖像重建原始圖像殘差信息。三維自適應(yīng)預(yù)測和自適應(yīng)算術(shù)編碼的使用,充分利用統(tǒng)計分布源參數(shù)符號。鄰居的最正確數(shù)量像素和像素使用了有損的預(yù)言。問題是更好的比以前的工作相當(dāng)接近原來的無損壓縮算法。引言今天有許多對圖像壓縮的研究,特別是對有損極低比特率壓縮。圖像數(shù)據(jù)庫,這樣高的壓縮比重要的存儲和快速傳輸,但對付各種用戶需求,無損圖像傳輸是必不可少的。在本文中,我們提出了一個有效的無損壓縮算法的灰色使用有損壓縮圖像。有損壓縮方案使用的接頭攝影專家組的離散余弦變換〔JEPG-DCT〕算法為有損編碼算法。首先我們搜索的像素相似〔語境〕,根據(jù)他們的鄰居像素。這樣的背景像素,我們預(yù)測值從上下文和鄰居。另一方面,對于每個像素,沒有上下文對,我們計算了沿水平根據(jù)相鄰像素的值的差異。為每個象素邊緣的水平,我們計算的預(yù)測系數(shù)的線性組合—最小平方誤差準(zhǔn)那么下的國家。不僅像素已經(jīng)處理也有損圖像的像素用于預(yù)測。每個邊緣能級的統(tǒng)計分布。對于每一個像素,得出預(yù)測值和實際值的計算,和是轉(zhuǎn)換到一個非負(fù)的值之前被編碼,根據(jù)他們的分布。在熵編碼階段,我們使用算術(shù)編碼。它是由自適應(yīng),和初始誤差分布僅由一個參數(shù)給出,這是具體的每個邊緣能級的統(tǒng)計分布。實驗結(jié)果說明,良好的性能。像其他LPL〔有損加上無損〕的方法,我們的壓縮比是小于原來的無損方案,但有輕微的差異。所有的一切,然而,得到用戶的大功他們可以瀏覽圖像無損壓縮解壓縮之前,許多這樣的方案。在文獻(xiàn)中已經(jīng)提出,但他們中的大多數(shù)將有損圖像及其無損剩余作為獨立的符號源。一個例外是內(nèi)存的算法[6]。我們利用有損數(shù)據(jù)徹底,更好的結(jié)果。1.1像素的估計通常的圖像數(shù)據(jù)掃描的討論掃描線方向。圖1。當(dāng)前像素一個加工點。順序像素的預(yù)測NFL使用PI的當(dāng)前像素的值P4。然后,卡爾—方法的預(yù)測誤差e=-通常的線性組合,用于預(yù)測如下,其中Ti~T4是系數(shù)的。此圖1:當(dāng)前像素是外推預(yù)測。處理后的相鄰像素=(1)通常,零階熵集{ε}低于集{Z}。因此,熵如Huffman編碼[我]或[2]或算術(shù)編碼的編碼方案后基于Lempel-Ziv編碼[3],減少數(shù)據(jù)大小。正文我們主要是使用的線性組合,如方程〔1〕的預(yù)測,但過程更適應(yīng)比正常的預(yù)測方法。我們使用更多的相鄰像素〔高達(dá)十〕,同時使用有損圖像和預(yù)測誤差E像素轉(zhuǎn)化為另一種形式在編碼之前。2.1個組的像素每個圖像像素具有不同的特性在一定的標(biāo)準(zhǔn)。從一個角度圖像壓縮編碼,分組相似的像素和他們在一起造成有效結(jié)果。分組的像素,我們使用的Q值:Q=(2)使用這個值,我們每個像素分類為幾組,根據(jù)表11、分組表圖2:〔a〕原始圖像的‘女孩’〔b〕JPEG壓縮圖像〔質(zhì)量值=5〕圖3:〔a〕的Q值圖像〔b〕簡單的預(yù)測及預(yù)測誤差圖3〔a〕和〔b〕顯示了Q值誤差可以簡單的預(yù)測??梢钥匆娝麄?,Q值密切相關(guān)的預(yù)測誤差。因此預(yù)測系數(shù)在每個組獨立計算。2.2上下文搜索表2顯示了每個組的最后的零階熵的圖像預(yù)測結(jié)果“姑娘〞。顯然,上組更難被壓縮比下組。我們使用基于上下文的預(yù)測的方法來處理這種上組。地區(qū)我們搜索類似地區(qū)〔我們表示“語境〞〕所示圖4。這是限制在已經(jīng)處理的像素的面積。該程序是掃描區(qū)找點滿足and(3)在這樣的點,找到一個最小的(4)3、如果最小濃度小于12,把它作為當(dāng)前點的上下文。否那么,返回失敗〔不存在〕。2.3預(yù)測2.3.1預(yù)測正常組我們預(yù)測值的當(dāng)前像素的線性組合鄰居的像素值,系數(shù)計算最小平方誤差法。用預(yù)言鄰域像素圖5所示〔PI……PIA〕的數(shù)量。像素是可變的〔10像素〕,然后我們就選擇最優(yōu)。優(yōu)先顯示在圖中的后綴的數(shù)目,最有效的數(shù)以后討論。表2:集團(tuán)與熵〔圖像的“姑娘〞〕圖4:上下文搜索區(qū)域圖5:用于預(yù)測的像素在這里,一些有損的像素〔RI。..,得到的PEG壓縮圖像〕廣泛地。使用這些像素,到達(dá)像插值預(yù)測。這預(yù)測有助于壓縮尺寸的減少。2.3.2預(yù)測語境條件下的標(biāo)準(zhǔn)〔3〕和〔4〕。一對上下文有相似的形狀的高度。因此,我們預(yù)測值2從{',B,C,Z,A,B,C}〔參見圖4〕。我們也使用最小平方誤差估計。最大的不同點非背景像素的預(yù)測是,不僅利用相鄰像素的值,但使用最接近的背景。本方案有效的連續(xù)的邊緣,因為附近的邊緣有一個類似的像素序列。2.4轉(zhuǎn)換錯誤如果每個像素有8位,預(yù)測誤差e=-可以有真正的數(shù)255和255之間〔約〕。經(jīng)過預(yù)測,應(yīng)表示為整數(shù)。轉(zhuǎn)化的一個簡單的方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論