流體力學強化突破性復習_第1頁
流體力學強化突破性復習_第2頁
流體力學強化突破性復習_第3頁
流體力學強化突破性復習_第4頁
流體力學強化突破性復習_第5頁
已閱讀5頁,還剩157頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重點難點識記連續(xù)介質概念,質量力和表面力的定義,密度、容重及相對體積質量的定義及其相互之間的聯(lián)系,壓縮系數(shù)和膨脹系數(shù)的定義式。領會流動性的力學含義,單位質量力和應力的概念,黏性的物理概念應用牛頓內摩擦定律計算黏性效應;液體壓縮性的計算。知識點解析流體力學的研究對象流體是液體和氣體的總稱,流體力學研究流體的平衡和宏觀機械運動的規(guī)律及其應用。因此提出連續(xù)介質的模型,認為流體質點完全充滿所占空間,沒有間隙存在,其物理性質和運動要素都是連續(xù)分布的作用在流體上的力從力的作用方式考慮,流體受力分為質量力和表面力兩大類。質量力是指作用于流體的每一質點上,大小與流體質量成正比的力,比如重力和慣性力,單位質量的流體所受的質量力稱為單位質量力,常表示為f=xi+yj+zk

表面力是指作用于流體的表面上,大小與作用面積成正比的力,如流體壓力,流動阻力等,單位面積上作用的表面力稱表面應力。一般分解法向壓應力和切應力。流體的主要力學性質流動性流動性是流體的基本特性,指的是流體在靜止時不能承受切力,任何微小的切力作用都將使流體質點之間產生相對運動,即流動。容重和密度慣性是物體保持原有運動狀態(tài)的性質,質量越大,慣性越大。單位體積的質量稱為密度。流體因受到地球引力作用而具有重力或重量的特性稱為重力特性,單位體積的重量稱為容重,密度和容重的關系為某種流體的質量與4C時相同體積水的質量之比稱為相對體積質量壓縮性與膨脹性當作用在流體上的的壓強p增加時,流體所占有的體積V將減小,這種特性稱為流體的壓縮性。液體的壓縮性用體積壓縮系數(shù)表示,即在一定的溫度下,單位壓強變化產生的體積變化率,壓縮系數(shù)的倒數(shù)稱為彈性系數(shù)(液體的壓縮系數(shù)隨溫度和壓強而變化)液體的膨脹性用溫度膨脹系數(shù)表示,即在一定的壓強下,單位溫度變化產生的體積變化率。(液體的膨脹系數(shù)隨溫度和壓強而變化)

在液體和低速氣流中,壓縮性和膨脹性的影響很小,一般可以忽略,即視為不可壓縮流體模型,均質不可壓縮流體中,密度為常數(shù)。黏性黏性是流體流層之間因為相對運動而產生內摩擦力以阻礙相對運動的性質,在牛頓流體中,內摩擦力或黏性力服從牛頓內摩擦定律可證明速度梯度等于流體微團的剪切變形速度,所以內摩擦力與剪切變形率成正比。流體黏性大小度量用動力粘性系數(shù)或運動黏性系數(shù)來表示理想流體指的是完全沒有粘性的流體。溫度對流體的黏性影響溫度升高時液體的粘性系數(shù)降低,流動性增加。氣體則相反,溫度升高,它的粘性系數(shù)增大。這是因為液體的黏性主要是由分子間的內聚力造成的,溫度升高時,分子間內聚力減小,黏性系數(shù)值降低;造成氣體黏性的主要原因則是氣體內部分子的運動,它使得速度不同的相鄰氣體層之間發(fā)生質量和動量的交換。當溫度升高時,氣體分子運動的速度加大,速度不同的相鄰氣體層之間的質量和動量交換隨之加劇。所以氣體的黏性將增大。物理量的單位與量綱量綱表示這個物理量的種類一個物理量q,若其數(shù)值依賴于量度單位制,則此量稱為有量量綱。若其數(shù)值與所采用的量度單位制無關,則稱為無量量綱。力學基本量已選定為長度L、質量M和時間T國際單位制:長度用米;時間用秒;質量用公斤。本講總結名詞解釋類:連續(xù)介質、壓縮性和膨脹性、不可壓縮流體、黏性、牛頓流體、理想流體計算題類:密度和容重的相互轉化關系,壓縮性和膨脹性的計算,牛頓內摩擦力計算,運動粘性系數(shù)和動力黏性系數(shù)的轉化關系,物理量的量綱簡答題類:溫度對液體和氣體的黏性影響填空題類:單位質量力的單位,流體的特性課后題參考:P137、8、9、10、11、12專業(yè)課強化提高課程第2講流體運動學基礎重點難點識記研究流體運動的兩種方法,恒定流和非恒定流、均勻流與非均勻流的定義,一元、二元、三元流的定義,流線與跡線的定義。領會歐拉法的含義,流線的概念,跡線的概念。應用歐拉法求流體質點的加速度,會判斷有旋運動和無旋運動的概念,流體微團運動的分解。重點:流體流動中的幾個基本概念,有旋運動和無旋運動的概念,恒定流與非恒定流,均勻流和非均勻流的概念。流線方程和跡線方程,流體微團的運動。難點:關于流場概念的理解,有旋運動和無旋運動的判斷,流線方程和跡線方程,歐拉方法研究的質點加速度,流體微團的運動分解基本知識點描述流體運動的兩個方法拉格朗日法是質點系法,它以流體個別質點隨時間的運動為基礎,通過質點系的運動求的整個流動。在t0時刻,用變量(a,b,c)表示質點所在空間位置坐標。則質點的運動為速度為加速度為在拉格朗日觀點下,流體質點加速度的求法是比較簡單的,求速度和加速度只須將位移矢量直接對時間求一、二階導數(shù)即可,但由于流體質點的運動軌跡非常復雜,而實用上也無須知道個別質點的運動情況,所以除了少數(shù)情況外,在流體力學中很少采用。歐拉法是流場法,它以流體質點流經流場中各空間點的運動即以流場作為描述對象研究流體的流動。不同的時間t,經同一點的流體質點不同,流速也不同。歐拉法用變量(x,y,z)作為空間點的坐標,則速度表示為加速度歐拉法的質點加速度由兩部分組成:時變加速度流動過程中流體由于速度隨時間變化而引起的加速度位變加速度是流動過程中流體由于速度隨位置變化而引起的加速度兩種方法的區(qū)別與聯(lián)系區(qū)別:拉格朗日法以(a,b,c,t)為變數(shù),以一定質點為研究對象,歐拉法以(x,y,z,t)為變數(shù),以空間點為研究對象。聯(lián)系:他們是描述流體運動的不同方法,對某一種流體,兩者均可用,且其表達式可互換。流體流動的分類及有關概念恒定流與非恒定流非恒定流:運動要素與時間t有關,其時變加速度不為零。恒定流:運動要素與時間t無關,其時變加速度為零。一元、二元、三元流流線與跡線流線是流體質點在任一瞬間的流動方向線,即流線上任一點的切線方向與該點的速度方向重合。流線的性質:1、同一時刻的不同流線不能相交。2、流線不能是折線,而是一條光滑的曲線。3、流線簇的疏密反映了速度的大??;流線密集的地方流速大,稀疏的地方流速小流線微分方程式中時間t為參變量跡線跡線是某一質點在某一時段內的運動軌跡線。跡線微分方程式中的t為自變量。在非恒定流情況下,流線的位置隨時間而變。流線與跡線不重合,在恒定流的情況下,流線的位置不隨時間而變,且與跡線重合。均勻流與非均勻流均勻流:流速沿流向不發(fā)生變化,流線是平行直線,過流斷面是平面,其位變加速度為零。非均勻流:流速沿流向發(fā)生變化,流線是曲線,過流斷面非平面,其位變加速度不為零。流體微團運動分解流體質點的運動,一般除了平移、轉動以外,還發(fā)生變形(角變形和線變形)亥姆霍茲速度分解定理微團運動分解平移運動指的是流體微團在運動過程中,任一線段的長短與防衛(wèi)均保持不變。線變形運動線變形速度因為不可壓縮流體的體積變形率為0,所以有這就是不可壓縮流體的連續(xù)方程角變形運動旋轉運動有旋運動與無旋運動流動根據流體質點是否繞自身軸旋轉,可分為有旋流和無旋流。有旋流指流體質點在運動中不僅發(fā)生平動或變形運動,而且繞著自身的瞬時軸做旋轉運動。無旋流也稱勢流或有勢流,指的是流體質點在運動中僅發(fā)生平動或變形運動,不發(fā)生旋轉運動,即流體質點不繞其自身任一軸轉動。定義渦量有旋流無旋流本講小結名詞解釋類:時變加速度、位變加速度、恒定流,均勻流,流線,跡線,無旋運動。填空題類:描述流體運動的方法、歐拉法研究的加速度,均勻流和恒定流的加速度關系,恒定流下,流線和跡線是同一條曲線。計算題類:流線方程的計算,跡線方程的計算,線變形計算,角變形計算,旋轉變形計算,渦量的計算。加速度的計算。課后題參考:P293、4、6、7專業(yè)課強化提高課程第3講流體靜力學基本要求理解和掌握流體靜壓強及其特性會推導歐拉平衡微分方程,理解歐拉平衡微分方程的物理意義。理解和掌握絕對和相對平衡時流體靜壓強的分布規(guī)律,測量和表示方法及點壓強的計算(利用等壓面)熟練掌握作用于平面壁和曲面壁上流體總壓力的計算。重點:流體靜壓強及其特性,點壓強的計算,靜壓強的分布,作用于平面壁和曲面壁的液體總壓力,壓力體圖。難點:流體平衡微分方程的建立與應用基本知識點流體靜壓強及其特性流體中某點A的靜壓強由下式確定:流體靜壓強的兩個基本特性流體平衡微分方程

其物理意義是:流體處于平衡狀態(tài)時,單位質量流體所受的表面力與質量力彼此相等歐拉平衡微分方程的積分歐拉平衡微分方程的綜合式為等壓面等壓面是平衡流體中由壓強相等的點構成空間的平面或曲面。常見的等壓面有:自由液面和平衡流體中互不相混合的兩種流體的分界面。等壓面的兩個特點:1、等壓面即等勢面2、等壓面與質量力正交等壓面是水平面應滿足的條件:1、靜止;2、連通3、連通的介質為同一均質流體;4、質量力僅有重力;5、同一水平面重力作用下的流體靜壓強當質量力僅為重力,即X=0,Y=0,Z=-g時,流體平衡微分方程的積分式為結論

1、僅在重力作用下,靜止流體中某一點的靜水壓強隨淹沒深度按線性規(guī)律增加;

2、僅在重力作用下,靜止流體中某一點的靜水壓強等于表面壓強加上流體的容重與該點淹沒深度的乘積;

3、自由表面下深度h相等的各點壓強均相等——只有重力作用下的同一連續(xù)連通的靜止流體的等壓面是水平面;

4、推廣:已知某點的壓強和兩點間的深度差,即可求另一點壓強值。等壓面當質量力僅為重力時,液體中的等壓面為水平面,由此可得到四點推論:

1,自由液面為水平面也為等壓面;

2、分界面為水平面也為等壓面;

3、壓強的大小與容器的形狀無關;

4、存在多種液體時,滿足靜止,同種,連續(xù)三個條件的水平面是等壓面。方程的意義幾何意義和物理意義方程說明在同種,靜止,連續(xù)的均質流體中各點的測壓管水頭都相等;單位重量流體具有的總勢能是相等的。壓強的度量與測壓儀表度量壓強的兩種基準壓強有兩種計算基準:絕對壓強和相對壓強絕對壓強、相對壓強、真空度壓強的度量單位

1、應力單位從壓強的定義出發(fā),以單位面積上承受的力來表示。

2、液柱高度常用水柱高度或汞柱高度,其單位為mH2O、mmHg。

3、大氣壓單位用大氣壓的倍數(shù)來表示,1at=101.325kPa液柱式測壓計

1、測壓管測壓管是以液柱高度表征測量點壓強的連通管,是一端接于測點,另一端開口通大氣的豎直玻璃管。測壓管適用于測量較小的壓強,但不適合測真空度

2、U型管測壓計在U型管內裝入分界面清晰的工作液體,常用水銀。U型管測壓計用于測壓管道或容器中某點的流體壓強,通常被測點壓強較大,并可測真空度。

3、傾斜式微壓計微壓計用于測定微小壓強,一般用于測定氣體壓強。液體的相對平衡相對平衡指各流體質點彼此之間及流體與容器之間無相對運動的平衡狀態(tài)。因為質點間無相對運動,所以流體內部或流體與邊壁之間都不存在切應力,相對平衡流體中,流體平衡微分方程仍然適用,但是質量力除重力外,還受到慣性力的作用1、勻加速水平直線運動中液體的平衡壓強分布等壓面方程自由液面方程應用以上方程時需注意坐標原點位于液面上,且運動相對于地球為水平直線運動。2、勻角速度旋轉運動容器中液體的平衡壓強分布規(guī)律等壓面方程自由液面方程應用以上方程時需注意坐標原點應設在旋轉拋物面的中心最低點。靜止液體作用在平面和曲面壁上的總壓力靜止液體作用于平面壁上的總壓力

1、靜水壓強分布圖根據力學基本方程p=rh繪制靜水壓強大??;靜水壓強垂直于受壓平面且為壓應力。專業(yè)課強化提高課程第4講流體靜力學靜水壓強分布圖繪制規(guī)則:1按照一定的比例尺,用一定長度的線段代表靜水壓強的大小;2用見圖標出靜水壓強的方向,指向手壓面并與該處手壓面垂直。靜止液體作用于平面壁的總壓力1解析法總壓力大小2總壓力的壓力中心圖解法適用范圍:規(guī)則平面上的靜水總壓力及其作用點的求解。原理:靜水總壓力大小等于壓強分布圖的體積,其作用線通過壓強分布圖的形心,該作用線與受壓面的焦點便是壓力中心D。靜止液體作用于曲面壁上的總壓力壓力體為一個純粹的幾何空間,與該空間是否充滿液體無關,但有虛實之分:當液體與壓力體位于曲面同側時稱為實壓力體,其垂直分力向下;當液體與壓力體位于曲面的異側時稱為虛壓力體,其垂直分力向上。結論:a.水平分力等于作用于該曲面的垂直投影面上的靜水總壓力,方向水平指向受力面,作用線通過面積Ax的壓強分布圖體積的重心。b.鉛垂分力等于該曲面上的壓力體所包含的液體重,其作用線通過壓力體的重心,方向鉛垂指向受力面。c.總壓力的作用線必通過Px,Pz的交點,但這個交點不一定位于曲面上。潛體與浮體本講小結名詞解釋類:相對壓強,絕對壓強,真空度,等壓面。簡答題類:靜力學基本方程式的幾何意義和物理意義。計算題類:等壓面,測壓管計算壓強,液體的相對平衡計算,精致液體作用于平面壁和曲面壁上的總壓力計算。填空題類:等壓面的條件,水平的容器地面的壓強分布。課后題參考:P532、3、5、6、10、11、12、13、14、15、16、17專業(yè)課強化提高課程第4講流體動力學基本方程基本要求識記連續(xù)性方程式黏性流體運動微分方程式歐拉運動微分方程式理想流體微分方程的積分基本知識點連續(xù)性方程對流體微團的質量守恒分析,可得到連續(xù)性方程的一般形式黏性流體運動微分方程根據牛頓第二定律,對流體微團的受力分析可得到應力形式的運動微分方程流體的應力與應變率關系稱本構方程理想流體的歐拉運動微分方程伯努利積分是理想不可壓流體的恒定流動中,沿流線積分的結果,即理想元流的伯努利方程本講小結計算題類:求解不可壓縮流體運動的存在性,求解流體流場切應力參考課后題P701、4專業(yè)課強化提高課程第5講流體動力學基本方程重點難點識記幾何相似,運動相似,動力相似的定義,Re,Fr,Eu等相似準則數(shù)的定義,量綱的定義。領會流動的力學相似概念,各個相似準則數(shù)的物理意義,量綱分析法的應用。應用量綱分析法推導物理公式,利用模型律安排模型實驗。重點:相似原理,相似準則,量綱分析法難點:量綱分析法,模型律基本知識點相似的基本概念為使模型流動能表現(xiàn)出原型流動的主要現(xiàn)象和特征,并從模型流動向上預測出原型流動的結果,就必須使兩者在流動上相似,即兩個互為相似流動的對應部位上對應物理量都有一定的比例關系。具體來說,兩相似流動應滿足幾何相似,運動相似和動力相似。原型流動用下標n表示,模型流動用下標m表示。幾何相似兩流動的對應邊長成同一比例,對應角相等

運動相似兩流動的對應點上流體速度矢量成同一比例動力相似兩流動的對應部位上同名力矢成同一比例流動相似的含義幾何相似是動力相似和運動相似的前提與依據,動力相似是決定二個流動相似的主導因素,運動相似是幾何相似和動力相似的表現(xiàn),凡相似的流動,必是幾何相似,運動相似和動力相似的流動。相似準則描述流體運動和受力關系的是流體運動微分方程,兩流動要滿足相似條件就必須同時滿足該方程,利用該方程可得到模型流動和原型流動在滿足動力相似時各比例系數(shù)之間的約束關系即相似準則。常用的相似準數(shù)有雷諾數(shù)Re弗洛德數(shù)Fr歐拉數(shù)Eu斯特勞哈數(shù)St雷諾數(shù)Re弗洛德數(shù)Fr歐拉數(shù)Eu斯特勞哈數(shù)St量綱分析法量綱量綱是物理量的單位種類。在流體力學領域中有三個基本量綱,長度量綱L、時間量綱T、質量量綱M。無量量綱無量量綱指物理量的量綱為1,用表示,實際是個數(shù),但與單純的數(shù)不一樣,它是幾個物理量組合而成的綜合物理量。量綱齊次性原理指一個物理現(xiàn)象或一個物理過程用一個物理方程表示時,方程中各項的量綱應該是一致的。Π定理對于某個物理現(xiàn)象,如果存在n個變量互為函數(shù),而這些變量中含有m個基本量,則可把這n個變量成(n-m)個無量綱數(shù)的函數(shù)關系即可合并n個物理量(n-m)個無量綱π數(shù)。Π定理解題步驟如下

1、確定關系式確定所研究流動問題所包含的各個物理量及其關系式。

2、確定基本量:從n個物理量中選取m個基本物理量作為基本量綱,一般m=33、確定無量綱變數(shù)π數(shù)的數(shù)目(n-m),并寫出其余物理量與基本物理量組成的π表達式

4、確定無量綱π數(shù)

5、寫出描述物理現(xiàn)象的關系式模型律要達到主要動力相似就應該根據所研究或所需解決的原型流動的性質來選擇恰當?shù)南嗨茰蕯?shù)。常用的是雷諾數(shù)Re和弗洛德數(shù)Fr。公式:本講小結填空題類:Re數(shù),F(xiàn)r數(shù),Eu數(shù),St數(shù)的物理意義計算題類:模型律的計算,物理量組合無量量綱,π定理。參考課后題P841、5、9、11專業(yè)課強化提高課程第6講理想流體的平面無旋運動基本要求有旋流與無旋流的定義,平面無旋流動的流函數(shù)與勢函數(shù)的定義式,幾個基本平面勢流的表達式。領會無旋流動的概念。會判斷有旋流和無旋流,能求解流場的流函數(shù)與勢函數(shù)。重點:有旋運動和無旋運動的概念,勢函數(shù)和流函數(shù)的概念。難點:有旋運動和無旋運動的判斷,勢函數(shù)和流函數(shù)的求解。平面無旋運動對于不可壓縮恒定二元勢流速度勢函數(shù)

1、存在條件:不可壓縮無旋流,即

2、勢函數(shù)與速度場之間的關系

3、勢函數(shù)滿足拉普拉斯方程,是調和函數(shù)4、勢函數(shù)的意義將平面勢流的問題歸結為在特定的邊界條件下解拉普拉斯方程,從而把解兩個未知函數(shù)Ux,Uy的問題變?yōu)榻庖粋€未知函數(shù)的問題。從數(shù)學上講,確定一個未知函數(shù)要比確定兩個未知函數(shù)簡單得多,如果能求解速度勢函數(shù)就可求出各點速度在各坐標軸方向的分量,亦就求得了速度場。流函數(shù)

1、存在條件不可壓縮流體的平面流動

2、流函數(shù)與速度場之間的關系適用范圍:無旋流,有旋流,實際的,理想的不可壓縮流體的平面流動。3、流函數(shù)滿足拉普拉斯方程,是調和函數(shù)適用條件:不可壓縮流體的平面有勢流動4、流函數(shù)的物理意義

a.流函數(shù)等值線就是流線

b.不可壓縮流體的平面流動中,兩點A和B的流函數(shù)之差等于穿過兩點間任意連線的單寬流量Qab即流函數(shù)與勢函數(shù)的關系平面無旋運動的勢函數(shù)和流函數(shù)共軛流函數(shù)的等值線與速度勢函數(shù)的等值線正交流網流網是不可壓縮流體平面無旋流動中,流線簇與等勢線簇構成的正交網格。其存在條件是不可壓縮平面勢流。流網的性質:1、組成流網的流線與等勢線互相垂直,即等流函數(shù)線與等勢線互相垂直。2、流網中每一網格的邊長之比等于速度勢與流函數(shù)的增值之比。根據上述流網的兩個性質,就可繪制流網,從而求得流場的速度分布。本講小結填空題類:流線和等勢線相互正交計算題類:已知速度勢求解流函數(shù)(根據勢函數(shù)和流函數(shù)與速度場的關系求解)參考課后題P996專業(yè)課強化提高課程第7講黏性管流基本要求一元流動模型中的流管,元流與總流,過流斷面,流量等概念,一元總流運動的連續(xù)性方程,伯努利方程及動量方程的形式,漸變流動的性質,水頭損失的分類和一般表達式,雷諾數(shù),均勻流動基本方程,圓管層流運動的若干結論;幾種典型邊界形狀的局部阻力系數(shù)。理解流體運動各控制方程的物理意義,總流三大方程的物理意義,應用條件,方程擴展及應用注意事項,層流紊流的特征及判別,紊流運動的特征,圓管紊流的水力光滑與水力粗糙,局部阻力損失產生的原因。應用連續(xù)性方程計算斷面平均流速和流量,應用元流伯努利方程計算點流速和壓強,熟練掌握總流運動三大方程的綜合運用;應用達西公式,謝才公式計算沿程水頭損失,局部水頭損失的計算方法。串聯(lián)管路和并聯(lián)管路的基本規(guī)律及其水力計算重點:總流連續(xù)性方程,伯努利方程,動量方程的應用,串并聯(lián)管路的水力計算。難點:運動微分方程,紊流運動一元流動模型用歐拉方法分析一元流動時,以流線概念為基礎,建立一元流動模型中以下重要概念。流場中任取不與流線相重合的封閉曲線,過曲線上各點作流線,所構成的管狀面,稱為流管;充滿流體的流管稱為流束。垂直于流速的斷面稱為過流斷面。當流速的過流斷面無限小時,其幾何特征與流線相同,這流束就稱為元流。在流場中做一非流線的曲線AB,過AB上各點繪流線,形成的空間曲面稱流面流體只沿流面或流管流動,不能穿越流面。對于非圓斷面管流,如明渠中的流動,引入一個綜合反映斷面大小和幾何形狀對流動影響的特征長度——水力半徑R流量的斷面平均流速單位時間內流過某一過流斷面的流體體積稱為體積流量Q一元流動基本方程連續(xù)性方程其連續(xù)性方程表現(xiàn)為伯努利方程反映流動過程中流體機械能的變化規(guī)律,故又稱能量方程可用總水頭線和測壓管水頭線反映能量沿流的變化規(guī)律:總水頭線下降,表明機械能沿程減少,其減小值是克服流動阻力而轉化為熱能的能量損失。測壓管水頭線沿程可升可降,表明動能與勢能沿程轉化的情況,取決于總流幾何邊界的變化。兩條水頭線的沿程變化率可表示為伯努利方程的應用條件:恒定流動,不可壓縮流體,質量力只有重力,計算斷面是漸變流斷面,兩端面間無能量輸入或輸出。若存在能量輸入或輸出問題,則方程改寫為應用伯努利方程時,需特別注意兩個問題:一是方程中的壓強p1,p2的基準問題,對液體流動,絕對壓強和相對壓強均可,而在氣體流動中,不同高程的大氣壓變化不能忽略,當采用相對壓強標準。總流伯努利方程適用條件流體是不可壓縮流流動場是重力場流體的流動是恒定流過流斷面是漸變流斷面流量沿程不變,既無分流或合流Z1和Z2的取值是過水斷面上某一指定點在同一基準面上的高度P1和p2,可以都用絕對壓強也可以都用相對壓強表示伯努利方程幾何意義Z——表示位置高度,又稱為位置水頭。

——表示測壓管高度,又稱壓強水頭。

——表示流速高度,又稱流速水頭。

——測壓管水頭。伯努利方程物理意義Z——表示單位重量流體所具有的位能。

——表示單位重量流體所具有的壓強勢能。

——表示單位流體所具有的動能。

——單位重量流體所具有的總勢能。動量方程是動量定理在流體運動中的體現(xiàn),它確立了流體受力與運動之間的關系,常用來求解運動流體與固體邊界的作用力,對不可壓縮流體的恒定總流運動,動量方程形式表示了恒定總流流段所受外力等于流出動量流量減去流入動量流量,這一基本含義可推廣到空間中的任意控制體流動阻力與水頭損失我們將因客服流動阻力而引起的水頭損失分為:沿程水頭損失和局部水頭損失。沿程水頭損失:在邊壁沿程無變化的均勻流段上,產生的流動摩擦阻力,稱為沿程阻力,沿程阻力做功而引起的水頭損失稱為沿程水土損失,以表示。局部水頭損失:在邊壁急劇變化,使流速分布改變的局部流段上,集中產生的流動阻力稱為局部阻力,局部阻力做功而引起的水頭損失稱為局部水頭損失用表示。整個管路的水頭損失可以疊加,也就是說,管路總損失等于各管段沿程水頭損失和局部水頭損失的總和,即水頭損失的計算公式沿程水頭損失式中,叫做沿程阻力系數(shù)。局部水頭損失

黏性流體的兩種流態(tài)各層質點互不摻混,稱這種流動稱為層流流動。流體質點的運動軌跡極不規(guī)則,各層質點相互摻混,這種流動稱為紊流流動。目前公認的臨界雷諾數(shù)是因此,可判斷管流中的流態(tài)均勻流動基本方程均勻流動中計算沿程損失之前,需要判斷流態(tài)。層流時沿程水頭損失與速度的一次方成正比例,紊流沿程水頭損失與速度的1.75~2.0次方成比例。但不論層流還是紊流,在均勻流動中沿程損失與沿程阻力之間的關系如下

圓管均勻流過流斷面上切應力呈直線分布,管軸處切應力為零,管壁處切應力達到最大,為圓管中的流動圓管中的層流(見書P122圖7-24)斷面流速分布管軸上流速最大流量斷面平均流速沿程阻力系數(shù)紊流運動紊流運動的基本特征是質點的摻混運動和運動要素的脈動現(xiàn)象。利用時間平均法,引入時均值概念,如時均流速則紊流的瞬時流動可分解為時均流動和脈動流動兩部分紊流脈動引起質點動量交換,從而產生紊流附加切應力,即紊流阻力是黏性切應力,是附加的慣性切應力紊流流場由兩部分區(qū)域構成:一部分是緊貼固體邊界作層流運動的極薄流層,稱黏性底層;另一部分是黏性底層以外的紊流核心。圓管紊流的流速分布呈對數(shù)型分布。紊流沿程水頭損失(見P128圖7-29)適用于層流和紊流流態(tài),層流,紊流根據實驗研究,壁面粗糙度與黏性底層厚度的相對大小,決定了紊流的三個阻力區(qū),所以分為五個區(qū)

分為五個區(qū):層流區(qū)、臨界過渡區(qū)、紊流光滑區(qū)、紊流過渡區(qū)、紊流粗糙區(qū)

局部水頭損失工業(yè)管道中,往往設有變徑、轉彎、分岔、流量表、閥門等部件和設備,這些局部構件的存在,使管路中的流動均勻性受到破壞,流速的大小、方向、或分布發(fā)生變化,集中產生流動阻力,便引起了局部水頭損失。突然擴大管(見P131圖7-31)

突然縮小管(見P132圖7-33)漸擴管及漸縮管彎管例題(P134例題7-8、7-9)有壓管流有壓流體沿管道滿管流動的現(xiàn)象稱有有壓管流。若沿程損失和局部損失都占有相當比重,計算中都不可忽略,這樣的管道稱短管。計算中可忽略局部損失和速度水頭仍能滿足工程要求,這樣的管道稱長管。長管水力計算的基本公式式中的S稱為管路的比阻串聯(lián)管路由不同管徑的管段依次首尾連接而成的管路系統(tǒng)稱為串聯(lián)管路。串聯(lián)管路阻力損失按阻力疊加原理,有無中途分流或合流的串聯(lián)管路中,流量相等,阻力疊加,總管路阻抗等于各管段阻抗之和。并聯(lián)管路流體從總管路兩節(jié)點間并排連接著兩根以上管段的管路,稱為并聯(lián)管路見P137圖7-39并聯(lián)節(jié)點間的阻力損失公式本講小結名詞解釋類:流管、流束、過流斷面、元流、沿程水頭損失、局部水頭損失、層流流動、脈動、黏性地層、當量粗糙高度、當量直徑、簡單管路。簡答題類:伯努利方程的幾何意義和物理意義,伯努利方程的適用條件,判斷流態(tài)的方法填空題類:質量流量與體積流量相互轉化關系,圓管均勻流過流斷面上切應力呈直線分布,管軸處切應力為零,管壁處最大。圓管中層流最大流速與平均流速的關系,層流中沿程阻力系數(shù),五個阻力區(qū):層流區(qū),臨界過渡區(qū),紊流光滑區(qū),紊流過渡區(qū),紊流粗糙區(qū)。計算題類;求解流場中一點的速度,伯努利方程的計算,動量方程的計算,串并聯(lián)管路的計算參考課后題:全部專業(yè)課強化提高課程第8講邊界層與繞流阻力基本要求熟悉繞過物體流動的圖畫,理解掌握邊界層的概念,掌握邊界層的厚度表達式;了解邊界層微分方程和動量積分方程解釋邊界層分離現(xiàn)象,熟悉繞流物體的阻力和升力計算重點:邊界層及其表述方程,繞流物體的作用力難點:邊界層及其表述方程基本知識點邊界層的概念繞過物體的流動是流體流動的又一種類型,研究繞流問題所關心的是物體周圍流場的分布情況,以及物體受到流體的作用力。繞物體流動時物體壁面附近存在一個薄層,其內部存在著很大的速度梯度和漩渦,黏性影響不能忽略,我們把這一薄層稱為邊界層。在這一薄層以外速度梯度很小,黏性影響很小,我們按理想流體的勢流流動考慮。邊界層厚度:由曲壁研發(fā)想方向到邊界層速度u=0.99U的地方作為邊界層厚度位移厚度動量損失厚度邊界層方程普朗特根據邊界層特性,應用量級比較法,將不可壓縮二維恒定流的黏性N-S方程組簡化為曲壁邊界層分離當物面是曲壁面時,壓強沿流動方向將發(fā)生變化,邊界層內的流動會受到很大的影響。見P154圖8-7達到C點處邊界層之外的流速達到最大值,此時壓強達到最小,這部分的流動是增速減壓。D點時動能消耗殆盡,流速減至零。流體不能沿著物體外形流動而離開物理表面的現(xiàn)象稱為流動分離。D點為分離點。由分離點開始形成一條兩側流速相反的間斷面,稱為分離面,DF線所示,并發(fā)展成后的流動大尺度的不規(guī)則的漩渦,使漩渦中流體的機械能部分的耗散,轉化為熱能。邊界層分離后,不斷的卷起漩渦并向下游形成尾跡,一般尾跡在物體下游延伸一段距離。尾流的形態(tài)變化主要取決于雷諾數(shù)的大小,隨雷諾數(shù)的增大尾流中的固定漩渦脫落形成周期振蕩,即卡門渦街。雷諾數(shù)越大,大尺度渦分解為隨機紊流運動流動分離兩個充分必要條件是黏性作用和存在逆壓梯度層流邊界層與紊流邊界層都會發(fā)生分離,但是層流邊界層比紊流邊界層更容易發(fā)生分離繞流物體的作用力當流體繞過一個物體運動時,流體對物體都會施加一個力,這個力可以分解為沿來流方向的阻力D和垂直于來流方向上的升力L,繞流物體的阻力包括黏性直接作用的摩擦阻力Df和物體前后壓強差引起的壓差阻力Dp。阻力通常表示為斯托克斯公式Re<1本講小結名詞解釋類:邊界層的概念,層流邊界層填空題類:C點處邊界層的流速最大壓強最小,左半部分的流動是增速減壓,右半部分的流動是減速增壓。D點稱為分離點。黏性作用與存在逆壓梯度是流動分離的兩個必要條件。層流邊界層比紊流邊界層更容易發(fā)生分離。計算題類:低雷諾數(shù)下微粒的運動推導專業(yè)課強化提高課程第9講明渠流動基本要求明渠均勻流產生的條件和特征,明渠均勻流的基本計算公式,矩形斷面和梯形斷面水力要素的計算和水力最優(yōu)條件,不淤允許流速和不沖允許流速;掌握明渠均勻流水力計算的三類問題,尤其是在設計斷面尺寸時的補充條件;掌握無壓圓管均勻流的水力特點和計算方法。了解明渠非均勻流的水躍和水跌現(xiàn)象,水面曲線變化的定性分析方法重點:梯形斷面渠道均勻流的三類計算問題難點:無壓圓管均勻流的水力特征和水力計算;明渠非均勻漸變流的水面曲線分析和計算基本知識點明渠流動是水流的部分周界與大氣接觸,具有自由表面的流動。由于自由表面上相對壓強為零,故又稱無壓流動。明渠可分為棱柱形渠道和非棱柱形渠道。凡是斷面形狀和尺寸沿程不變的長直渠道,稱為棱柱形渠道。見P160圖9-1過水斷面的水力要素見P161表9-2明渠的底坡明渠均勻流明渠均勻流的特征及形成條件過水斷面的形狀、尺寸及水深沿程不變。過水斷面上的流速分布,斷面平均流速沿程不變。總水頭線、水面線及渠底線相互平行,所以,總水頭線坡度,水面線坡度和渠道底坡i彼此相等明渠均勻流滿足相應的條件:明渠均勻流只能出現(xiàn)在底坡不變,斷面形狀、尺寸、壁面粗糙系數(shù)都不變的長直順坡渠道中,在平坡、逆坡渠道,非棱柱形渠道都不可能形成均勻流明渠均勻流的基本公式明渠均勻流流速公式由謝才公式和連續(xù)性方程,Q=VA=常數(shù),可得明渠均勻流的流量計算式K稱為流量模數(shù),單位與流量相同。他是斷面形狀,尺寸及邊界粗糙程度對過水能力影響的綜合反映謝才系數(shù)明渠水力最優(yōu)斷面和允許流速當I,n及面積A一定時,使渠道所通過的流量最大的斷面形狀稱水力最優(yōu)斷面。當I,n,A一定時,濕周最小或者水力半徑最大的斷面通過流量最大。梯形斷面水力最優(yōu)條件水力半徑為水力最優(yōu)斷面的水力半徑為水深的一半矩形的水力最優(yōu)斷面可看成m=0時的特例,故起水力最優(yōu)條件為速度的范圍明渠恒定非均勻流在棱柱形渠道中,由于底坡和糙率沿程變化,或出現(xiàn)平坡和逆坡渠段,以及渠中由建筑物影響等因素,造成水深和流速的沿程變化,形成非均勻流動,主要問題是急變流動的水躍和水跌現(xiàn)象,以及漸變流中水面曲線的分析和計算。

明渠非均勻流概述斷面比能e是相對通過各自斷面的最低點的基準面所具有的機械能,而單位重量流體的機械能E是相對同一基準面的機械面。二者是不同的能量概念。E沿程必然減少,而斷面比能e沿程可增可減。臨界水深斷面比能曲線上,相應于e最小值的水深hk,稱為臨界水深對矩形斷面明渠,可得臨界底坡若正常水深恰好與該流量下的臨界水深相等,相應的渠道底坡稱為臨界底坡臨界流速明渠水流在水深h=hk時,對應的斷面流速稱為臨界流速水躍和水跌當明渠水流的流態(tài)由緩流向急流過度時,產生水面的急劇降落現(xiàn)象稱水跌,常發(fā)生在跌坎處,由緩坡向陡坡過度時以及由水庫進入陡坡渠道的進口處,按漸變流理論,h=hk恰好發(fā)生在變坡斷面處。流態(tài)由急流向緩流過渡時,水面穿越臨界水深線急劇躍起的現(xiàn)象稱為水躍,常發(fā)生在閘,壩的下游以及由陡坡向緩坡過渡的渠道中,在流量一定的棱柱形渠道中,水躍的共軛水深h’和h”間滿足水躍基本方程在矩形斷面中,可求的共軛水深的計算公式水躍連接有三種方式,即遠驅式,臨界式和淹沒式。根據水躍前后渠道底坡和水深情況,結合共軛水深的計算進行判斷以此微分方程為依據,根據渠道底坡情況和水面所在區(qū)域分析得知,共有12種水面曲線形式,即本講小結名詞解釋類:明渠流動,水力最優(yōu)斷面,不淤允許流速,不沖允許流速,斷面比能,臨界水深,臨界底坡,水躍和水跌簡答題類:明渠均勻流的特征和形成條件,棱柱形渠道中恒定非均勻漸變流線水面曲線的分析,遠驅式水躍,臨界式水躍,淹沒式水躍分析。計算題類:求解設計渠道底坡,流量,流速;求解設計渠道斷面尺寸,求解臨界水深,斷面比能;根據明渠水流流態(tài)判別準則判別水流的流動狀態(tài)。專業(yè)課強化提高課程第10講孔口,管嘴出流,堰流,閘孔出流重點難點識記孔口,管嘴出流的基本公式,流速系數(shù)和流量系數(shù)值。自由出流和淹沒出流的比較,孔口和管嘴過流能力的比較,圓柱形外管嘴的真空現(xiàn)象和正常工作條件;掌握孔口出流和管嘴出流的水力計算方法;重點:孔口管嘴出流的流量計算方法難點:孔口管嘴的恒定出流。孔口及管嘴的出流容器壁上開一孔口,流體經孔口出流的水力現(xiàn)象稱為孔口出流。管嘴則是一段與孔口緊密相連的短管,流體流出時充滿短管出口的全部斷面??卓诔隽鞯男再|也決定于水股流出孔口后的情況:流股是流到大氣中或者流到充滿液體的空間,所以又可分為自由和淹沒出流??妆诘暮穸群托螤顚Τ隽鞯男再|也有影響。在正常的工作條件下,若孔口具有尖銳的邊緣,出流水股與孔壁僅接觸于一條直線上,此時出流僅受到局部阻力,具有這種條件的孔口稱為薄壁孔口。薄壁孔口的恒定出流孔口出流時,作用于孔口的水頭如果是維持不變的,則流體的流速,壓力等物理量都將不隨時間而改變,流體的運動是恒定流。流體流徑孔口的局部阻力損失孔口流速系數(shù)收縮斷面的面積表征水流經過孔口后的收縮程度,稱為水股收縮系數(shù)薄壁孔口的恒定淹沒出流見P198圖10-3

——液體流過淹沒孔口時局部阻力損失在這里指出淹沒孔口的流速,流量公式中的H指孔口前后的水頭差,流量系數(shù)和流速系數(shù)則根據不同的流體和孔口形狀有別,一般有實驗數(shù)據可查。對于薄壁小孔口各項系數(shù)分別是:管嘴的恒定出流如果孔口壁較厚或在孔口上加一段短管,則使出流的流量受影響。流體經過管嘴出流,一般情況下是首先發(fā)生流體的收縮,然后擴大充滿全管,在收縮處,流體與管壁分離,中間形成真空狀態(tài),往往會增加管嘴出流的流量。這是管嘴出流不同于孔口出流的基本特征。見圖P199圖10-4管嘴出流流量公式經過管嘴出流時,水流充滿全部周界,在出口處不發(fā)生局部收縮現(xiàn)象,因而管嘴的收縮系數(shù)等于1,在此情況下管嘴的流量系數(shù)與流速系數(shù)是相等的??卓谂c管嘴恒定自由出流的流量公式差別主要在于流量系數(shù)不同。孔口的流量系數(shù)是0.62,而管嘴是0.82,二者差1.34倍,即說明了在相同的水頭及孔口和管阻橫斷面尺寸相同的條件下,圓柱形外管嘴的流量比薄壁圓孔口的流量要大34%真空值的存在產生吸引流體的作用,促使管嘴流量的增加。真空是具有極限值的。為了保證管嘴工作的正常條件,必須使管嘴內的真空值小于極限真空值,否則外面的空氣就會經過管嘴出口斷面進入真空區(qū),這樣就會造成真空的破壞。一般管嘴中允許的真空值不宜大于7m水柱,則作用于圓柱形外管嘴的實際水頭H的極限值不許大于如果管嘴太短,那么流股收縮后,來不及在管嘴內擴大,或者即使在管嘴里來得及擴大,但真空區(qū)太接近管嘴出口斷面,就容易發(fā)生真空破壞。如果管嘴太長,那么沿程損失就表現(xiàn)出來,實質上這種管嘴就成管路流動。因此保證圓柱形外管嘴正常穩(wěn)定工作的充分條件是:堰流明渠無壓緩流經某種障礙時,上游發(fā)生壅水,從障礙上溢流時水面跌落,這一局部水流現(xiàn)象稱堰流。障礙壁稱為堰。見圖P202圖10-5堰頂溢流的水流情況,隨堰頂相對厚度的不同而發(fā)生變化,根據相對厚度將堰流分為,薄壁堰流,實用堰流,寬頂堰流三種類型。堰流基本公式寬頂堰流的水力計算寬頂堰的溢流現(xiàn)象隨相對厚度而變化。自由式寬頂堰流的代表性流動圖形見圖P209圖10-14,水流進入堰口水面降落,在距堰口不遠處形成小于臨界水深的收縮水深h1<hk,然后形成水面近似平行堰頂?shù)募绷?,最后在出口水面第二次降落與下游水流銜接。淹沒式寬頂堰流當下游水位高出堰頂高度足夠大時,將使堰頂水流自由式堰流的急流轉變?yōu)榫徚鳎纬裳蜎]式寬頂堰,降低過水能力寬頂堰的淹沒標準閘孔出流渠道中的的閘門部分開啟時,水流受閘門控制而從閘門底坎與閘門下緣間的孔口流出時,這種水流狀態(tài)稱為閘孔出流。當閘門完全開啟,閘門下緣脫離水面,閘門對水流不起控制作用時,閘孔出流則轉化為堰流。閘底坎一般為寬頂堰或曲線型實用堰。閘門型式主要有平板閘門及弧形閘門。底坎為寬頂堰型的閘孔出流見P212圖10-16形成閘孔出流時,水流在閘門的約束下發(fā)生收縮,收縮斷面的水深hc一般小于臨界水深hk,水流為急流狀態(tài),而閘門下游渠道中水流一般為緩流,下游水深h>hk。所以,閘孔出流必然以瑞岳的形式與下游水位銜接。設收縮水深的躍后水深為hc”。當下游水深h<=hc”時。發(fā)生遠驅式水躍貨臨界式水躍,下游水位不影響閘孔出流,稱自由式閘孔出流,若h<hc”,發(fā)生淹沒式水躍,水躍覆蓋了收縮斷面,閘孔出流量隨下游水深的增大而減小,稱為淹沒式出流。自由式閘孔出流

底坎為曲線型實用堰的閘孔出流底坎為曲線型實用堰的閘孔出流當閘門底坎為曲線實用堰時流量公式本講小結名詞解釋類:孔口出流,管嘴,薄壁孔口,堰流填空題類:堰流的三種類型,孔口流速系數(shù),水股收縮系數(shù),流量系數(shù)的計算,圓柱形外管嘴正常穩(wěn)定工作的充分條件,底坎為寬頂堰的閘孔出流收縮斷面的水深小魚臨界水深簡答題類:在相同的水頭及孔口和管阻橫斷面尺寸相同的條件下,管嘴出流和孔口出流流量的比較。圓柱形外管嘴正常穩(wěn)定工作的充分條件的原因。計算題類:薄壁孔口的自由出流和淹沒出流計算,管嘴的恒定出流計算,閘孔出流計算。參考課后題:1,2專業(yè)課強化提高課程第11講滲流重點難點滲流基本概念滲流達西定律裘皮衣公式本講小結滲流基本概念液體在空隙介質中的流動稱為滲流水在巖土空隙中的狀態(tài)可分為氣態(tài)水,附著水,薄膜水,毛細水和重力水。從巖土方面來看,滲流的規(guī)律性與巖土空隙的形狀大小有密切關系,從而涉及巖土顆粒的形狀大小,粒徑的均勻性,排列方式及孔隙率。本講討論均質各向同性巖土中重力水的恒定流。巖土的滲流特性與巖土的空隙率有密切關系孔隙率m反映了巖土的密實程度。滲流分類滲流也分為恒定滲流和非恒定滲流;均勻滲流和非均勻滲流。非均勻滲流可分為漸變滲流、急變滲流。根據透水層的上下邊界限制情況及有無自由水面,滲流又可分為無壓滲流和有壓滲流,無壓滲流的自由水面稱為浸潤曲面,在平面問題中稱浸潤曲線。滲流運動的狀態(tài)也有層流與紊流之分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論