版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網(wǎng)格紙上正方形小格邊長為,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積等于()A.B.C.D.2.如圖,,是半徑為2的圓周上的定點,為圓周上的動點且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.3.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.4.對于函數(shù)f(x)=2sinxcosx,下列選項中正確的是()A.f(x)在(,)上是遞增的 B.f(x)的圖象關(guān)于原點對稱C.f(x)的最小正周期為 D.f(x)的最大值為25.設(shè),,,則()A. B. C. D.6.已知分別為內(nèi)角的對邊,若,b=則=()A. B. C. D.7.名小學(xué)生的身高(單位:cm)分成了甲、乙兩組數(shù)據(jù),甲組:115,122,105,111,109;乙組:125,132,115,121,119.兩組數(shù)據(jù)中相等的數(shù)字特征是()A.中位數(shù)、極差 B.平均數(shù)、方差C.方差、極差 D.極差、平均數(shù)8.已知為等差數(shù)列,其前項和為,若,,則公差等于()A. B. C. D.9.為了得到函數(shù)的圖象,只需把函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.設(shè)向量,滿足,,則()A.1 B.2 C.3 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.異面直線,所成角為,過空間一點的直線與直線,所成角均為,若這樣的直線有且只有兩條,則的取值范圍為___________________.12.從甲、乙、丙、丁四個學(xué)生中任選兩人到一個單位實習(xí),余下的兩人到另一單位實習(xí),則甲、乙兩人不在同一單位實習(xí)的概率為________.13.夏季某座高山上的溫度從山腳起每升高100米降低0.8度,若山腳的溫度是36度,山頂?shù)臏囟仁?0度,則這座山的高度是________米14.函數(shù)的值域為__________.15.如圖,分別沿長方形紙片和正方形紙片的對角線剪開,拼成如圖所示的平行四邊形,且中間的四邊形為正方形.在平行四邊形內(nèi)隨機取一點,則此點取自陰影部分的概率是______________16.函數(shù)的最小正周期為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.18.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.19.如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F(xiàn)是BE的中點,求證:(1)平面ABC;(2)平面EDB.(3)求幾何體的體積.20.已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.21.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由三視圖可知該幾何體是一個四棱錐,作出圖形即可求出表面積?!驹斀狻吭搸缀误w為四棱錐,如圖..選C.【點睛】本題考查了三視圖,考查了四棱錐的表面積,考查了學(xué)生的空間想象能力與計算能力,屬于基礎(chǔ)題。2、D【解析】
由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運用扇形面積公式和三角形的面積公式,計算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡運算能力,屬于中檔題.3、A【解析】
易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【點睛】本題主要考查了旋轉(zhuǎn)體中圓臺的體積公式,屬于基礎(chǔ)題.4、B【解析】
解:,是周期為的奇函數(shù),
對于A,在上是遞減的,錯誤;
對于B,是奇函數(shù),圖象關(guān)于原點對稱,正確;
對于C,是周期為,錯誤;
對于D,的最大值為1,錯誤;
所以B選項是正確的.5、B【解析】
根據(jù)與特殊點的比較可得因為,,,從而得到,得出答案.【詳解】解:因為,,,所以.故選:B【點睛】本題主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性與特殊點的問題,要熟記一些特殊點,如,,.6、D【解析】
由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負(fù)值舍去.故選.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.7、C【解析】
將甲、乙兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、方差全部算出來,并進(jìn)行比較,可得出答案.【詳解】甲組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,乙組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,因此,兩組數(shù)據(jù)相等的是極差和方差,故選C.【點睛】本題考查樣本的數(shù)字特征,理解極差、平均數(shù)、中位數(shù)、方差的定義并利用相關(guān)公式進(jìn)行計算是解本題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.8、C【解析】
由題意可得,又,所以,故選C.【點睛】本題考查兩個常見變形公式和.9、A【解析】
根據(jù),因此只需把函數(shù)的圖象向左平移個單位長度.【詳解】因為,所以只需把函數(shù)的圖象向左平移個單位長度即可得,選A.【點睛】本題主要考查就三角函數(shù)的變換,左加右減只針對,屬于基礎(chǔ)題.10、A【解析】
將等式進(jìn)行平方,相加即可得到結(jié)論.【詳解】∵||,||,∴分別平方得2?10,2?6,兩式相減得4?10﹣6=4,即?1,故選A.【點睛】本題主要考查向量的基本運算,利用平方進(jìn)行相加是解決本題的關(guān)鍵,比較基礎(chǔ).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將直線,平移到交于點,設(shè)平移后的直線為,,如圖,過作及其外角的角平分線,根據(jù)題意可以求出的取值范圍.【詳解】將直線,平移到交于點,設(shè)平移后的直線為,,如圖,過作及其外角的角平分線,異面直線,所成角為,可知,所以,所以在方向,要使有兩條,則有:,在方向,要使不存在,則有,綜上所述,.故答案為:【點睛】本題考查了異面直線的所成角的有關(guān)性質(zhì),考查了空間想象能力.12、.【解析】
求得從甲、乙、丙、丁四個學(xué)生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實習(xí)的方法數(shù),由古典概型的概率計算公式可得所求值.【詳解】解:從甲、乙、丙、丁四個學(xué)生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實習(xí)的方法數(shù)為種,則甲、乙兩人不在同一單位實習(xí)的概率為.故答案為:.【點睛】本題主要考查古典概型的概率計算公式,考查運算能力,屬于基礎(chǔ)題.13、2000【解析】
由題意得,溫度下降了,再求出這個溫度是由幾段100米得出來的,最后乘以100即可.【詳解】由題意得,這座山的高度為:米故答案為:2000【點睛】本題結(jié)合實際問題考查有理數(shù)的混合運算,解題關(guān)鍵是溫度差里有幾個0.8,屬于基礎(chǔ)題.14、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.15、【解析】
設(shè)正方形的邊長為,正方形的邊長為,分別求出陰影部分的面積和平行四邊形的面積,最后利用幾何概型公式求出概率.【詳解】設(shè)正方形的邊長為,正方形的邊長為,在長方形中,,故平行四邊形的面積為,陰影部分的面積為,所以在平行四邊形KLMN內(nèi)隨機取一點,則此點取自陰影部分的概率是.【點睛】本題考查了幾何概型概率的求法,求出平行四邊形的面積是解題的關(guān)鍵.16、【解析】
將三角函數(shù)進(jìn)行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結(jié)果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個古典概型,可知基本事件共12個,方程當(dāng)時有實根的充要條件為,滿足條件的事件中包含9個基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個幾何概型,試驗的全部約束所構(gòu)成的區(qū)域為,.構(gòu)成事件的區(qū)域為,,.根據(jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實數(shù)根”.當(dāng)時,方程有實數(shù)根的充要條件為.(Ⅰ)基本事件共12個:.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.事件中包含9個基本事件,事件發(fā)生的概率為.(Ⅱ)實驗的全部結(jié)果所構(gòu)成的區(qū)域為.構(gòu)成事件的區(qū)域為,所求的概率為【點睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.18、(1)選擇①,;選擇②,(2)【解析】
(1)選擇①,利用正弦定理余弦定理化簡即得C;選擇②,利用正弦定理化簡即得C的值;(2)根據(jù)余弦定理得,再求的面積.【詳解】解:(1)選擇①根據(jù)正弦定理得,從而可得,根據(jù)余弦定理,解得,因為,故.選擇②根據(jù)正弦定理有,即,即因為,故,從而有,故(2)根據(jù)余弦定理得,得,即,解得,又因為的面積為,故的面積為.【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.19、(1)見解析(2)見解析(3)【解析】
(1)如圖:證明得到答案.(2)證明得到答案.(3)幾何體轉(zhuǎn)化為,利用體積公式得到答案.【詳解】(1)∵F分別是BE的中點,取BA的中點M,∴FM∥EA,F(xiàn)MEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四邊形FMCD是平行四邊形,∴FD∥MC,F(xiàn)D?平面ABC,MC?平面ABC∴FD∥平面ABC.(2)因M是AB的中點,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF?面EAB∴CM⊥AF,又CM∥FD,從而FD⊥AF,因F是BE的中點,EA=AB所以AF⊥EB.EB,F(xiàn)D是平面EDB內(nèi)兩條相交直線,所以AF⊥平面EDB.(3)幾何體的體積等于為中點,連接平面【點睛】本題考查了線面平行,線面垂直,等體積法,意在考查學(xué)生的空間想象能力和計算能力.20、(1);(2)證明見解析,;(3)或.【解析】
(1)運用數(shù)列的遞推式以及數(shù)列的和與通項的關(guān)系可得,再由等比數(shù)列的定義、通項公式可得結(jié)果;(2)對等式兩邊除以,結(jié)合等差數(shù)列的定義和通項公式,可得所求;(3)求得,由數(shù)列的錯位相減法求和,可得,化簡,即,對任意的成立,運用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時,,又,相減可得,即,則;(2)證明:,可得,可得是首項和公差均為1的等差數(shù)列,可得,即;(3),前n項和為,,相減可得,可得,,即為,即,對任意的成立,由,可得為遞減數(shù)列,即n=1時取得最大值1?2=?1,可得,即或.【點睛】“錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結(jié)果一定不能忘記等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 樓梯圖紙課程設(shè)計
- 煙氣脫硫脫硝課程設(shè)計
- 2025年度施工階段BIM咨詢合同(施工資源優(yōu)化配置篇)3篇
- 二零二五年度LED燈具安裝與節(jié)能效益評估合同3篇
- 2025運輸合同設(shè)備搬遷運輸合同
- 2025年度施工現(xiàn)場環(huán)境安全培訓(xùn)與咨詢合同2篇
- 土地承包合同的期限是多長2025年
- 2025年度商鋪租賃合同終止及共有設(shè)施管理協(xié)議3篇
- 2025年度教育貸款委托貸款合同特征解析3篇
- 2025年度工地臨時辦公用房租賃合同2篇
- 2024-2025學(xué)年寒假致學(xué)生家長的一封信(安全版)
- 人才引進(jìn)政策購房合同模板
- 《兩用物項證》課件
- 《電梯維保規(guī)則》課件
- DB54T 0425.1-2024 公共數(shù)據(jù) 數(shù)據(jù)元規(guī)范 第一部分:總則
- 江蘇省泰州市2023-2024學(xué)年高一上學(xué)期期末語文試題及答案
- 2024年高考政治選必二《法律與生活》重要知識問題梳理總結(jié)
- 孕早期nt檢查課件
- 【MOOC】工程制圖解讀-西安交通大學(xué) 中國大學(xué)慕課MOOC答案
- 期末復(fù)習(xí)(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)蘇教版
- 檢驗科新進(jìn)人員崗前培訓(xùn)
評論
0/150
提交評論