




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
動(dòng)點(diǎn)的軌跡問(wèn)題根據(jù)動(dòng)點(diǎn)的運(yùn)動(dòng)規(guī)律求出動(dòng)點(diǎn)的軌跡方程,這是解析幾何的一大課題:一方面求軌跡方程的實(shí)質(zhì)是將“形”轉(zhuǎn)化為“數(shù)”,將“曲線”轉(zhuǎn)化為“方程”,通過(guò)對(duì)方程的研究來(lái)認(rèn)識(shí)曲線的性質(zhì);另一方面求軌跡方程是培養(yǎng)學(xué)生數(shù)形轉(zhuǎn)化的思想、方法以及技巧的極好教材。該內(nèi)容不僅貫穿于“圓錐曲線”的教學(xué)的全過(guò)程,而且在建構(gòu)思想、函數(shù)方程思想、化歸轉(zhuǎn)化思想等方面均有體現(xiàn)和滲透。軌跡問(wèn)題是高考中的一個(gè)熱點(diǎn)和重點(diǎn),在歷年高考中出現(xiàn)的頻率較高,特別是當(dāng)今高考的改革以考查學(xué)生創(chuàng)新意識(shí)為突破口,注重考查學(xué)生的邏輯思維能力,運(yùn)算能力,分析問(wèn)題和解決問(wèn)題的能力,而軌跡方程這一熱點(diǎn),常涉及函數(shù)、三角、向量、幾何等知識(shí),能很好地反映學(xué)生在這些能力方面的掌握程度。求軌跡方程的的基本步驟:建設(shè)現(xiàn)代化(檢驗(yàn))建(坐標(biāo)系)設(shè)(動(dòng)點(diǎn)坐標(biāo))現(xiàn)(限制條件,動(dòng)點(diǎn)、已知點(diǎn)滿足的條件)代(動(dòng)點(diǎn)、已知點(diǎn)坐標(biāo)代入)化(化簡(jiǎn)整理)檢驗(yàn)(要注意定義域“挖”與“補(bǔ)”)求軌跡方程的的基本方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡(jiǎn)單明確,不需要特殊的技巧,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。2.定義法:運(yùn)用解析幾何中一些常用定義(例如圓錐曲線的定義),可從曲線定義出發(fā)直接寫(xiě)出軌跡方程,或從曲線定義出發(fā)建立關(guān)系式,從而求出軌跡方程。3.代入法:動(dòng)點(diǎn)所滿足的條件不易表述或求出,但形成軌跡的動(dòng)點(diǎn)P(x,y)卻隨另一動(dòng)點(diǎn)Q(x’,y’)的運(yùn)動(dòng)而有規(guī)律的運(yùn)動(dòng),且動(dòng)點(diǎn)Q的軌跡為給定或容易求得,則可先將x’,y’表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關(guān)點(diǎn)法。4.參數(shù)法:求軌跡方程有時(shí)很難直接找到動(dòng)點(diǎn)的橫坐標(biāo)、縱坐標(biāo)之間的關(guān)系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再?gòu)乃笫阶又邢?shù),得出動(dòng)點(diǎn)的軌跡方程。5.交軌法:求兩動(dòng)曲線交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),例如求兩動(dòng)直線的交點(diǎn)時(shí)常用此法,也可以引入?yún)?shù)來(lái)建立這些動(dòng)曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程。可以說(shuō)是參數(shù)法的一種變種。6.轉(zhuǎn)移法:如果動(dòng)點(diǎn)P隨著另一動(dòng)點(diǎn)Q的運(yùn)動(dòng)而運(yùn)動(dòng),且Q點(diǎn)在某一已知曲線上運(yùn)動(dòng),那么只需將Q點(diǎn)的坐標(biāo)來(lái)表示,并代入已知曲線方程,便可得到P點(diǎn)的軌跡方程。7.幾何法:利用平面幾何或解析幾何的知識(shí)分析圖形性質(zhì),發(fā)現(xiàn)動(dòng)點(diǎn)運(yùn)動(dòng)規(guī)律和動(dòng)點(diǎn)滿足的條件,然而得出動(dòng)點(diǎn)的軌跡方程。8.待定系數(shù)法:求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求。9.點(diǎn)差法:求圓錐曲線中點(diǎn)弦軌跡問(wèn)題時(shí),常把兩個(gè)端點(diǎn)設(shè)為并代入圓錐曲線方程,然而作差求出曲線的軌跡方程。此部分內(nèi)容主要考查圓錐曲線,圓錐曲線的定義是根本,它是相應(yīng)標(biāo)準(zhǔn)方程和幾何性質(zhì)的“源”。對(duì)于圓錐曲線的有關(guān)問(wèn)題,要有運(yùn)用圓錐曲線定義解題的意識(shí),“回歸定義”是一種重要的解題策略。二、注意事項(xiàng):1.求軌跡方程的關(guān)鍵是在紛繁復(fù)雜的運(yùn)動(dòng)變化中,發(fā)現(xiàn)動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律,即P點(diǎn)滿足的等量關(guān)系,因此要學(xué)會(huì)動(dòng)中求靜,變中求不變。來(lái)表示,若要判斷軌跡方程表示何種曲線,則往往需將參數(shù)方程化為普通方程。3.求出軌跡方程后,應(yīng)注意檢驗(yàn)其是否符合題意,既要檢驗(yàn)是否增解,(即以該方程的某些解為坐標(biāo)的點(diǎn)不在軌跡上),又要檢驗(yàn)是否丟解。(即軌跡上的某些點(diǎn)未能用所求的方程表示),出現(xiàn)增解則要舍去,出現(xiàn)丟解,則需補(bǔ)充。檢驗(yàn)方法:研究運(yùn)動(dòng)中的特殊情形或極端情形。4.求軌跡方程還有整體法等其他方法。在此不一一綴述?!镜湫屠}選講】一、直接法題型:例1已知直角坐標(biāo)系中,點(diǎn)Q(2,0),圓C的方程為,動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與的比等于常數(shù),求動(dòng)點(diǎn)M的軌跡。解:設(shè)MN切圓C于N,則。設(shè),則化簡(jiǎn)得(1)當(dāng)時(shí),方程為,表示一條直線。(2)當(dāng)時(shí),方程化為表示一個(gè)圓。說(shuō)明:求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說(shuō)明軌跡是什么。變式--如圖,圓與圓的半徑都是1,,過(guò)動(dòng)點(diǎn)P分別作圓、圓的切線PM、PN(M、N分別為切點(diǎn)),使得.試建立適當(dāng)?shù)淖鴺?biāo)系,并求動(dòng)點(diǎn)P的軌跡方程.解:以的中點(diǎn)O為原點(diǎn),所在的直線為軸,建立平面直角坐標(biāo)系,則由已知可得:因?yàn)閮蓤A的半徑均為1,所以設(shè),則,即解法二:設(shè)△AOB的重心為G(x,y),A(x1,y1),B(x2,y2),則(1)∵OA⊥OB∴,即,……(2)又點(diǎn)A,B在拋物線上,有,代入(2)化簡(jiǎn)得∴所以重心為G的軌跡方程為。2〉如圖,設(shè)拋物線的焦點(diǎn)為F,動(dòng)點(diǎn)P在直線上運(yùn)動(dòng),過(guò)P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點(diǎn).求△APB的重心G的軌跡方程.【解析】設(shè)切點(diǎn)A、B坐標(biāo)分別為,∴切線AP的方程為:切線BP的方程為:解得P點(diǎn)的坐標(biāo)為:所以△APB的重心G的坐標(biāo)為,所以,由點(diǎn)P在直線l上運(yùn)動(dòng),從而得到重心G的軌跡方程為:評(píng)析:1.用參數(shù)法求軌跡是高考中??嫉闹匾}型,由于選參靈活,技巧性強(qiáng),也是學(xué)生較難掌握的一類問(wèn)題。2.選用什么變量為參數(shù),要看動(dòng)點(diǎn)隨什么量的變化而變化,常見(jiàn)的參數(shù)有:斜率、截距、定比、角、點(diǎn)的坐標(biāo)等。3.要特別注意消參前后保持范圍的等價(jià)性。4.多參問(wèn)題中,根據(jù)方程的觀點(diǎn),引入n個(gè)參數(shù),需建立n+1個(gè)方程,才能消參(特殊情況下,能整體處理時(shí),方程個(gè)數(shù)可減少)。五、交軌法與幾何法題型求兩動(dòng)曲線交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),例如求兩動(dòng)直線的交點(diǎn)時(shí)常用此法,也可以引入?yún)?shù)來(lái)建立這些動(dòng)曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程??梢哉f(shuō)是參數(shù)法的一種變種。例5拋物線的頂點(diǎn)作互相垂直的兩弦OA、OB,求拋物線的頂點(diǎn)O在直線AB上的射影M的軌跡。(考例5)解1(交軌法):點(diǎn)A、B在拋物線上,設(shè)A(,B(所以kOA=kOB=,由OA垂直O(jiān)B得kOAkOB=-1,得yAyB=-16p2,又AB方程可求得,即(yA+yB)y--4px--yAyB=0,把yAyB=-16p2代入得AB方程(yA+yB)y--4px+16p2=0①又OM的方程為②由①②消去得yA+yB即得,即得。所以點(diǎn)M的軌跡方程為,其軌跡是以為圓心,半徑為的圓,除去點(diǎn)(0,0)。說(shuō)明:用交軌法求交點(diǎn)的軌跡方程時(shí),不一定非要求出交點(diǎn)坐標(biāo),只要能消去參數(shù),得到交點(diǎn)的兩個(gè)坐標(biāo)間的關(guān)系即可。交軌法實(shí)際上是參數(shù)法中的一種特殊情況。解2(幾何法):由解1中AB方程(yA+yB)y--4px+16p2=0可得AB過(guò)定點(diǎn)(4p,0)而OM垂直AB,所以由圓的幾法性質(zhì)可知:M點(diǎn)的軌跡是以為圓心,半徑為的圓。所以方程為,除去點(diǎn)(0,0)。六、點(diǎn)差法:例6(2004年福建,22)如圖,P是拋物線C:上一點(diǎn),直線過(guò)點(diǎn)P且與拋物線C交于另一點(diǎn)Q。若直線與過(guò)點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程。(圖見(jiàn)教材P129頁(yè)例2)。解:設(shè)由(1)得,過(guò)點(diǎn)P的切線的斜率,直線的斜率,直線的方程為(2)方法一、(利用韋達(dá)定理、中點(diǎn)坐標(biāo)公式)聯(lián)立(1)(2)消去得, M為PQ的中點(diǎn),消去 PQ中點(diǎn)為M的軌跡方程為方法二(點(diǎn)差法)由得則。將上式代入(2)并整理,得 PQ中點(diǎn)為M的軌跡方程為說(shuō)明:本題主要考查了直線、拋物線的基礎(chǔ)知識(shí),以及求軌跡方程的常用方法,本題的關(guān)鍵是利用導(dǎo)數(shù)求切線的斜率以及靈活運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題。七、向量法:圖6例7、(1995全國(guó)理)已知橢圓如圖6,=1,直線L:=1,P是L上一點(diǎn),射線OP交橢圓于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2.當(dāng)點(diǎn)P在L上移動(dòng)時(shí),求點(diǎn)Q的軌跡方程,并說(shuō)明軌跡是什么曲線圖6本題解法較多,是一道有難度的多動(dòng)點(diǎn)軌跡問(wèn)題,如果用常規(guī)方法求解,其過(guò)程曲折,運(yùn)算繁雜,而利用向量作形與數(shù)的轉(zhuǎn)化,由此展開(kāi)思路,不僅減少運(yùn)算量,其過(guò)程也就變得平坦自然總結(jié):以上給出了處理軌跡問(wèn)題的幾種常用方法,對(duì)于下面幾點(diǎn),在復(fù)習(xí)軌跡問(wèn)題時(shí)是值得我們引起高度重視的:1.高考方向要把握高考考查軌跡問(wèn)題通常是以下兩類:一類是容易題,以定義法、相關(guān)點(diǎn)法、待定系數(shù)法等為主,另一類是高難度的純軌跡問(wèn)題,綜合考查各種方法。2.“軌跡”、“方程”要區(qū)分求軌跡方程,求得方程就可以了;若是求軌跡,求得方程還不夠,還應(yīng)指出方程所表示的曲線類型(定形、定位、定量)。3.抓住特點(diǎn)選方法處理軌跡問(wèn)題成敗在于:對(duì)各種方法的領(lǐng)悟與解題經(jīng)驗(yàn)的積累。所以在處理軌跡問(wèn)題時(shí)一定要善于根據(jù)題目的特點(diǎn)選擇恰當(dāng)?shù)姆椒ǎㄊ裁辞闆r下用什么方法上面已有介紹,這里不再重復(fù))。4.認(rèn)真細(xì)致定范圍確定軌跡的范圍是處理軌跡問(wèn)題的難點(diǎn),也是學(xué)生容易出現(xiàn)錯(cuò)誤的地方,在確定軌跡范圍時(shí),應(yīng)注意以下幾個(gè)方面:
①準(zhǔn)確理解題意,挖掘隱含條件;
②列式不改變題意,并且要全面考慮各種情形;③推理要嚴(yán)密,方程化簡(jiǎn)要等價(jià);
④消參時(shí)要保持范
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒早期學(xué)習(xí)支持知到課后答案智慧樹(shù)章節(jié)測(cè)試答案2025年春長(zhǎng)春市城建工程學(xué)校
- 2025健康美容項(xiàng)目服務(wù)合同
- 網(wǎng)絡(luò)平臺(tái)搭建合同范本
- 2025設(shè)備租賃合同書(shū)版
- 清單招標(biāo)工程合同范本
- 2025年租賃合同范本:住宅房屋出租合同
- 五年級(jí)下冊(cè)數(shù)學(xué)教案-《一、分?jǐn)?shù)》 西師大版
- 2024年南京市溧水區(qū)人民醫(yī)院招聘真題
- 2024年貴州社區(qū)工作者招聘真題
- 2024年福建省寧德職業(yè)技術(shù)學(xué)院招聘真題
- 存款保險(xiǎn)知識(shí)競(jìng)賽
- 信息技術(shù)必修1數(shù)據(jù)與計(jì)算2.2《做出判斷的分支》教學(xué)設(shè)計(jì)
- 七年級(jí)生物上冊(cè) 3.2.1 種子的萌發(fā)說(shuō)課稿1 (新版)新人教版
- 2025年臨床醫(yī)師定期考核必考復(fù)習(xí)題庫(kù)及答案(1000題)
- 2024年中國(guó)男式印花T-恤衫市場(chǎng)調(diào)查研究報(bào)告
- 保安指揮車輛標(biāo)準(zhǔn)手勢(shì)培訓(xùn)
- 【MOOC】醫(yī)學(xué)心理學(xué)-北京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 中建塔式起重機(jī)安裝、拆除專項(xiàng)施工方案
- 《光明乳業(yè)公司企業(yè)應(yīng)收賬款管理現(xiàn)狀及優(yōu)化建議(10000字論文)》
- 邀請(qǐng)招標(biāo)文件模板
- 金融投資項(xiàng)目立項(xiàng)管理制度
評(píng)論
0/150
提交評(píng)論