




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DevelopmentandEncouragementofrenewableenergytechnologies1.1ProjectBackgroundSinceitsinceptioninthe1970s,theU.S.DepartmentofEnergy(DOE)hasoperatedasubstantialprograminthedevelopmentandencouragementofrenewableenergytechnologies.Aspartofitsongoingefforttodocumentthestatusandpotentialofthesetechnologies,DOE,alongwithitsnationallaboratoriesandsupportorganizations,developedthefirstsetofRenewableEnergyTechnologyCharacterizations(TCs)in1989.TheTCsweredesignedtorespondtoDOE’sneedforasetofconsistentcostandperformancedatatosupportthedevelopmentofthebiennialNationalEnergyPolicyPlans.ThatfirstsetofTCswassubsequentlyusedtosupporttheanalysesthatwereperformedin1991byDOEfortheNationalEnergyStrategy.TheTCswereupdatedin1993,butuntilnowhadnotbeenformallypublishedandexistedonlyindraftform.TheElectricPowerResearchInstitute(EPRI),operatingonbehalfofitsmemberutilities,hasconductedaprogramintheassessment,evaluationandadvancementofrenewablepowertechnologiessincethemid-1970s.Inthatrole,EPRIhasbeencalleduponbyitsmembers,andoftenbytheenergycommunityingeneral,toprovideobjectiveinformationonthestatusandoutlookforrenewablesinprospectiveelectric-powerapplications.Towardthataim,EPRIhasjoinedwithDOEtoproducethissetofRenewableEnergyTechnologyCharacterizations.ThisjointprojectisoneofanumberofactivitiesthatDOEandEPRIareconductingunderthejointDOE-EPRISustainableElectricPartnershipenteredintoformallybybothorganizationsinOctober1994.ItbuildsuponanumberofactivitiesconductedjointlybyDOEandEPRIoverthepasttwodecades.1.2Objectives,ApproachandScopePurposeandAudience:Inresponsetogrowinginterestinrenewablepowertechnologiesandtheneedforconsistent,objectiveassessmentsoftechnologyperformanceandcosts,DOEandEPRIcollaboratedtopreparetheRenewableEnergyTechnologyCharacterizations(TCs)presentedinthisdocument.Together,throughthisdocument,DOEandEPRIaimtoprovidefortheenergycommunityandthegeneralpublicanobjectivepictureofthestatusandexpectationsfortherenewablepowertechnologiesinelectric-powerapplicationsintheUnitedStates.TheseTCsrepresentaconsensusbetweenDOEandEPRIonthecurrentstatusandprojecteddevelopmentpathoffiverenewableelectricitygeneratingtechnologies:biomass,geothermal,photovoltaics,solarthermalandwind.Inaddition,recognizingtherolethatstoragecanplayinenhancingthevalueofsomerenewablepowerplants,aTCforstoragetechnologies,withastrongemphasisonbatteries,isincludedinanappendix.TheTCscanservetwodistinctpurposes.First,theyaredesignedtobeareferencetoolforenergy-policyanalystsandpower-systemplannersseekingobjectivecostandperformancedata.Second,theextensivediscussionsoftheassumptionsthatunderliethedataprovidevaluableinsightsforR&DprogramplannersastheystrivetoprioritizefutureR&Defforts.Approach:Buildingonthebestavailableinformationandexperiencefrommanyyearsofdirectinvolvementinthedevelopmentandassessmentofrenewableenergytechnologies,expertsfromDOE,itsnationallaboratoriesandsupportorganizationspreparedcharacterizationsofthemajorrenewabletechnologies.Theseweresubjectedtoin-depthreviewbyEPRItechnicalstaffinrenewablesandselectedoutsidereviewers,andthendiscussedatlengthintwotechnicalworkshopsinvolvingthewritersandthereviewers.Thecharacterizationswerethenrevised,reflectingdiscussionsatandsubsequenttotheworkshops,resultinginthisconsensusdocument.Insomecases,EPRIstaffparticipatedinpreparationofoverviewsections.DocumentScope:TheTCsdonotdescribespecificproductsorhardwareconfigurations.Theydescribetypicalsystemconfigurationsatfiveyearincrementsthroughtheyear2030,basedonaprojectedevolutionofthetechnologiesduring1-2thattimeframe.Theyoftenportraychangesinexpectedtechnologyconfigurationovertime.Allowingachangingconfigurationensuresthat,ineachtimeframediscussed,theTCrepresentsthemostcost-effectiveconfigurationprojectedtobeavailableinthattimeframe.Forexample,thesolarthermalpowertowerevolvesfromahybridplantwithaconventionalreceivertoasolar-onlyplantwithanadvancedreceiver.TheTCsdonotattempttopickwinnersamongavarietyofchoices.Inthatspirit,thinfilmPVsystemsare,forexample,describedonlyinagenericway,notspecifyinganyparticularthinfilmtechnologyinanygiventimeframe.ThisviewofthetechnologyfuturemirrorstheR&DportfolioapproachthatDOEtakes,allowingthetechnologyitselfandthemarketplacetodeterminewinnersandlosers.EachTCshouldbethoughtofasadescriptionofthattechnologyinaparticularapplication,typicallyasagridconnectedsystemforbulkpowersupply.However,someTCsdobrieflydescribeotherapplicationsthatcouldusesubstantiallythesametechnologyconfiguration.TheseTCsdifferfromEPRI’sTechnicalAssessmentGuide(TAG?)inthattheyprovidemoreextensivediscussionsoftheexpectedtechnologyevolutionthrough2030.However,thecostandperformancedatapresentedherearebeingusedasabasisforTAG?revisionsthatarecurrentlyinprogress.SimilartotheTAG?,theseTCsdonotdescribearecommendedeconomicanalysismethodology,butinsteaddescribevariousapproachesthatcouldbetakentocalculatelevelizedcostofenergyorotherappropriatefinancialfiguresofmerit.Theseapproachesspanarangeofpossibleownershipscenariosinaderegulatedutilityenvironment.CautionaryNote:Thecostandperformanceinformationpresentedrepresentthebestjudgmentsoftheindividualsinvolvedinthepreparationandreviewofthisdocument.Asthesetechnologiesenterthecommercialmarketplace,normalcompetitiveforcesandcommercialexperiencemayhaveimpactsthataredifficulttopredictatthistime.Forexample,thereareindicationsthatpricesforsomeconventionalpower-plantcomponentsandassociatedengineeringservicesaredroppingascompetitioninpowergenerationbecomesmorewidespread.Basedonveryrecentcommercialexperience,thistrendisalreadyreflectedinthegeothermal-hydrothermalflash-steamplantcostspresentedinthisdocument.Similarcostimpactsmaybeobservedinotherrenewablepowerplantsemployingconventionalthermalgenerationcomponentsoncethetechnologiesbecomeestablishedsufficientlytoattractmultiplecommercialsuppliers.Readersareurgedtousecautioninapplyingnumericaldatafromthisdocumentincommercialsituationswithoutconsultingengineeringfirmsactivelyinvolvedinthecommercialmarketplace.RelationshiptoOngoingRenewablesProgramsatDOEandEPRIThetechnologiesdiscussedinthisdocumentareconsideredbytherenewablescommunity,andbythemanagementsoftheDOEandEPRIrenewablesprograms,tohavegoodpotentialforcontributingsignificantlytotheU.S.electricalenergysupply.Consequently,thesetechnologiescontinuetoreceivetechnicalandmarket-developmentsupportwithintheprogramsofDOEandEPRI.Ofcourse,thereisnoguaranteethatallofthesetechnologieswilldevelopandcontributeasprojectedinthisdocument.Rather,theirindividualprospectsandroleswilldependnotonlyonthedegreeofsupportreceived,butalsoonthepaceofprogressandonsocietalneedsandpriorities.Ultimately,themarketplace,reflectingbothcommercialandsocietalforces,willdecide.Development-SupportAssumptionTheprojectedprogressforthesetechnologiesisbasedontheassumptionthatrobustprogramscontinueinbothtechnologyandmarketdevelopment.Ingeneral,theseprogramsneedbothpublicandprivatesectorsupport,withthebalanceshiftingmoretowardthecommercialsectorastechnicalmaturityisapproached.Ifsupportforaparticulartechnologyiscurtailed,thentheprojectedprogressalmostcertainlywillnotoccur.1.3GenericBenefitsandIssuesThebenefitsofusingrenewableenergyresourcesaremany.Mostofthesebenefitsarisefromtheirvirtuallyinexhaustiblenature.Solarandwindresourcesarereplenishedonadailybasis.Biomasscanbegrownthroughmanagedagriculturalprogramstoprovidecontinuoussourcesoffuel.Geothermalpowerisextractedfromthevirtuallyunlimitedthermalenergyintheearth’scrust.RenewableenergyresourcesarebroadlyavailableacrosstheU.S.Certainregions,however,tendtohavemoreaccessibleresourceofonetypethananother.Figure1illustratesthisdiversity.Forexample,intheMidwest,biomassandwindresourcesareexcellent,asisthesolarradiationneededforflat-platephotovoltaics.IntheSouthwest,highlevelsofdirectnormalinsolationareideallysuitedtosolarthermalandsunlight-concentrationphotovoltaictechnologies.GeothermalresourcesareconcentratedinthewesternpartsoftheU.S.Theavailabilityofeachoftherenewableresourcesisexploredfurtherinthetechnologyoverviewsinthisdocument.Thebenefitsofrenewableenergyextendbeyondabundanceanddiversity.Asindigenousresources,theyfosterbothlocalcontrolandeconomicgrowth.Aninvestmentinrenewableenergycontributestolocaleconomicsecurity.Inaddition,theincorporationofrenewablesinagenerationportfoliomayreducetherisksassociatedwithfluctuatingfossil-fuelpricesandsupplies.Asrenewableenergytechnologiesbecomemorecost-competitive,theirtrueeconomicbenefitsarebeingrealized.Sincemanyrenewableenergyplantsdonotneedtobebuiltinlargescaletoachievethelowestpossibleplantcosts,theycanbebuiltinsizeincrementsproportionatetoloadgrowthpatternsandlocalneeds.Thisisoftenreferredtoastheirmodularity.Giventheirsmallersize,theycanalsobelocatedclosertothecustomerload,reducinginfrastructurecostsfortransmissionanddistribution,andhelpingtoguaranteelocalpowerreliabilityandquality.Such“distributed”applicationsappeartohaveapotentiallyhigheconomicvaluebeyondjustthevalueoftheelectricitygenerated.Severaloftherenewableenergytechnologies,namelyphotovoltaics,solar-thermalandwind,producenoemissionsduringpowergeneration.Biomassplants,withaproperlymanagedfuelcycleandmodernemissioncontrols,producezeronetcarbonemissionsandminimalamountsofotheratmosphericeffluents.Thesituationismuchthesameforgeothermalplants.Whenthesetechnologiesdisplacefossilfuels,theyavoidemissionsthatwouldotherwisebegenerated.Withthegrowingconcernaboutclimatechangeandcarbonemissions,renewableenergytechnologiescanbesignificantcontributorstoglobaleffortstoreducegreenhouse-gasemissions.Thevalueofrenewable-generatedelectricityisdeterminedinpartbythetimeofdayatwhichtheelectricityisdeliveredtothegridandalsobytheprobabilitythatitwillbeavailablewhenneeded.Forexample,solaroutputtendstofollowutilitysummer-peakloadsinmanylocations.Becausepowerdeliveredduringpeakperiodsismorevaluabletotheutilitysystem,renewableenergytechnologiescanprovidehighvalueelectricityandcanbesignificantcontributorstoareliablepowersupplysystematcriticaltimesinthoseregions.Biomass,geothermalandfossil-hybridrenewablesystemsarefullydispatchableandcompetemostcloselywithconventionalfuel-basedsystems.Insomecases,suchasthesolar-thermalpowertowerwithhotsaltstorage,energy-storagecapabilitymaybeincludedeconomically.Inthesecases,thedegreeofdispatchabilityachieveddependsontheamountofstorageincluded.Intermittentsystems,suchaswindandsolarwithoutstorage,willhavevalueasdeterminedprimarilybythetimeofdayandyearatwhichelectricityoutputisavailable.Furtherdiscussionsoftheissueofvaluearecontainedthroughoutthisdocument.Itisimportanttorealizethattheproperuseoffinancialmodelstodetermineprojectattractivenessrequiresaccurateprojectionsaboutthevaluetocustomersofthepowerfromthatsystem.Inmostcases,therelativemeritofaparticularrenewablepowertechnologyisnotdeterminedsolelybyalevelizedcostofenergy.OverallPerspectivesontheRenewableTechnologiesWhileeachofthecharacterizedrenewabletechnologiesisdiscussedindetailinthisdocument,thefollowingsummarypresentsanoverviewofcurrentstatusandapplicationsforeach.Biomass:Theuseofforestryandagriculturalresiduesandwastesindirect-combustionsystemsforcogenerationofelectricityandprocessheathasbeenawell-establishedpracticeintheforest-productsindustryformanyyears.Useofthesefeedstocksinutilityelectricpowerplantshasalsobeendemonstratedinseveralareasofthecountrywithaccesstoappropriatefuels,ingeneralwithacceptabletechnicalperformanceandmarginaleconomics.Themarginaleconomicsareduetothesmallsizeofmanyoftheexistingplantsandtheconsequenthighoperatingcostsandlowefficiencies.Also,fuelshortageshaveoftendrivenfuelpricesupandmadeoperationtooexpensive.Thelarger-sizedplants,inthe50MWrangeratherthanthe10-to-25MWsizerangeofmanyprojectsbuiltinthe1980s,haveeeeconomicsthatareacceptablewhenfuelcostsarecloseto$1/MMBtu,orwhensteamorheatfromthedirectcombustionbiomassboilerisalsoavaluedproduct.Inadditiontoactivitywithcurrenttechnology,developmentisproceedingonadvanceddirect-combustionsystems.Onetechnologycanusedirectcombustionofbiomassfuelstodaywithoutincurringthecapitalexpenseofanewboileroragasificationcombined-cyclesystem.Thistechnologyisbiomassco-firing,whereinbiomassisco-fired,orburnedtogether,withcoalinexistingpowerplants.Thoughitdoesnotincreasetotalpowergeneration,thismodeofoperationcanreducepower-plantemissionsandserveasaproductiveuseforawastestreamthatrequiresdisposalinsomeway.Co-firingcanbecarriedoutasaretrofit,oftenwithverylowincrementalcapitalandO&Mcosts.Biomassco-firinghasbeensuccessfullydemonstratedinanumberofutilitypowerplants,andisacommerciallyavailableoptioninlocationswhereappropriatefeedstocksareavailable.1-5Biomassgasificationandsubsequentelectricitygenerationincombustion-turbineorcombined-cycleplantsisalsobeingpursued.Thismodeofoperationcanbemoreattractivethandirectcombustionbecauseof(a)potentiallyhigherthermalefficiency,(b)theabilitytomaintainhighperformanceinsystemsoverawiderangeofsizesfromabout5MWtoabout100MW,and(c)increasedfuelflexibilitybecauseofopportunitiestoreduceunwantedcontaminantspriortothepowergenerationstage.Thesesystemsareinthedevelopmentanddemonstrationphase.Thekeyissuerequiringsuccessfulresolutionissufficientcleanupofthebiogassothatturbinedamageisavoided.Thegasmustbecleanedofalkalistogas-turbine-entrancestandards,andthiscleanupmusttakeplaceinanenvironmentthatispronetotarformation.Geothermal:Commercialelectricityfromgeothermalsteamreservoirshasbeenarealityforover30yearsinCaliforniaandItaly.However,steamreservoirsarerareandhavealreadybeenexploited,atleastinthedevelopedcountries.Ofgreaterpotentialinbothdevelopedanddevelopingcountriesaregeothermal-hot-water,orliquid-dominatedhydrothermal,resources.Anumberofhydrothermalplants,perhaps30to40,bothdevelopmentalandcommercial,havebeenbuiltandareinoperation.Someuseconventionalsteam-separationandsteam-cyclepower-plantequipment,whileothersemployabinarycyclethattakesadvantageofworkingfluidswithlowervaporizationtemperaturesthanwater.Commercialattractivenessdependslargelyonthequalityofthehydrothermalresource:temperatureofthehotwater,permeabilityoftherockformation,chemistryofthehotwater,andnecessarydrillingdepth.Toascertainthisquality,wellsneedtobedrilled.Sincetheoutcomeisnotassuredpriortodrilling,locatingsuitableresourcespresentsamajorcommercialrisk.Anothergeothermal-powerapproachisintheresearchstage.Thisinvolvesdrillingdeepholes(one-to-fivekilometers)toreachhotdryrockthatisclosetolocationswheremagmaorotherhotintrusionsfromthemoltenmantleoftheEarthcomeunusuallyclosetothesurface.Inthiscontext,“dry”rockimpliesthatnonaturalwatersourceisassociatedwiththehotrock,unlikethesituationinthehydrothermalcase.Waterfromasurfacesourcewouldbeinjected,heated,usedinasteam-orbinary-powercycle,andthenre-injectedforrecycling.Ifsuccessful,thisapproachcouldmakeavailableahugeresourcerelativetopresentgeothermalresources.However,technicaluncertaintiesandrisksareveryhigh,sothecommercialpotentialofthisapproachcannotbeestimatedaccuratelytoday.Photovoltaics:Photovoltaicpowersystemsconvertsunlightdirectlyintoelectricitythroughasolid-state-electronicprocessthatinvolvesnomovingparts,nofluids,nonoiseandnoemissionsofanykind.Thesefeaturesareattractivefromoperating,maintenanceandenvironmentalstandpoints,andhavepositionedphotovoltaicstobethepreferredpowertechnologyformanyremoteapplicationsbothinspaceandontheground.Relativetoconventionalgridpower,photovoltaicelectricityissomefive-to-ten-timesmoreexpensive.Hence,itiscurrentlyusedinlocationsorapplicationswhereutilitydistributionlinesarenotreadilyavailable.Newer,potentiallylower-costphotovoltaicntechnologyisemergingfromongoingindustry-governmentresearchanddevelopmentprograms,anditsuseincommercialanddemonstrationapplicationsisbeginning.Althoughincreasingusecouldoccurmorerapidlyinsomedevelopingcountries,grid-competitivephotovoltaicelectricityisprobablyten-to-twentyyearsoffinthedevelopedworld.However,interestisgrowinginanewmodeofphotovoltaicdeployment,calledbuilding-integrated,wherethephotovoltaiccellsormodulesbecomeintegraltostructural,protectiveorcosmeticelementsofabuildingsuchasroofsandfacades.Intheseapplications,thehighcostofthephotovoltaiccomponentsispartiallymaskedbythecostofthebuildingelements,andthedecisiontoemployphotovoltaicsismadeonthebasisofsuchfactorsasaestheticsandsocialconscienceratherthancostofelectricityalone.Manybelievethatthiscommercialentrystrategywillultimatelysucceedinreducingphotovoltaiccoststhroughproductionexperiencetothepointwheretheycanapproachcostsofgridpower.Severalgovernmentsandmanycommunitiesinthedevelopedworldareincentivizingtheseapplicationsbasedonthisbelief.Becauseofthegrowingprominenceofbuilding-integratedandotheron-siteapplicationsofphotovoltaics,asectiononresidentialrooftopphotovoltaicsystemsisincludedinthisdocument.Anotherapproachtopowerplantsemployingphotovoltaicsusesconcentratedsunlightinconjunctionwithunusuallyhigh-performancephotovoltaiccells.Whileattractivetechnicalperformancehasbeendemonstratedinsomeinstances,anearlymarketforthesesystemshasnotmaterialized.Unlikeflat-platephotovoltaicsystemsthathaveestablishedthemselvesinremotepowerapplications,thepotentiallyhigh-performanceconcentratorsystemshavenotyetestablishedatrackrecordinthefield.This,coupledwiththeneedtobuildrelativelylargesystems(atleastseveraltensofkW)torealizetheircostadvantageandtheaddedcomplexityassociatedwithrequiredsunlighttracking,hasseriouslyhamperedmarketentryuptonow.SolarThermal:Solarthermalpowersystemsuseconcentratedsunlighttoheataworkingfluidthatgenerateselectricityinathermodynamiccycle.Threegeneralapproacheshavereceiveddevelopmentattention.Thefirst,calledthecentralreceiverorpower-towerconfiguration,employsafieldofmirrorsthattrackthesunandreflectsunlighttoacentralreceiveratopatower.Theworkingfluidiscirculatedthroughandheatedinthereceiver,andisthenusedtodriveaconventionalturbine.Thefluidanditsthermalenergycanbestoredtodecouplethecollectionofthesolarenergyandthegenerationofelectricity,enablingthispowerplanttobedispatchedmuchlikeconventionalthermalpowerplants.Thisisanattractivefeaturetoelectricutilitiesandpowersystemmanagers.Severalexperimentalanddemonstrationpower-towersystemshavebeenbuilt;andone,employingthermalstorage,iscurrentlyundertestandevaluationinCalifornia.Asyet,thecommercialprospectsforthisapproachcannotbeaccuratelyprojected.Anotherapproachemploysparabolicdishes,eitherassingleunitsorinfields,thattrackthesun.Areceiverisplacedatthefocalpointofthedishtocollecttheconcentratedsolarenergyandheatthesystem’sworkingfluid.Thatfluidthendrivesanengineattachedtothereceiver.Dishsystemsalsohavepotentialforhybridization,althoughmoredevelopmentalworkisrequiredtorealizethispotential.Incontrasttotheothertwoapproaches,whicharetargetedatplantsinthe30MWandhigherrange,andwhichuseasingleturbine-generatorfedbyallofthesolarcollectors,eachdish-receiver-engineunitisaself-containedelectricity-generatingsystem.Typically,thesearesizedatabout10to30kW.Hence,alargerpowerplantisobtainedbyemployinganumberoftheseunitsinconcert.Withsomeinterruptionsduetochangingmarketconditions,dishsystemsusingStirlingengineshavebeendeployed,withbothpublicandprivatesupport,forexperimentalanddemonstrationpurposessincetheearly1980s.Currentdevelopmentanddemonstrationactivitiesareaimedatkeytechnicalandeconomicissuesthatneedtoberesolvedbeforecommercialprospectscanbeclarified.Stirling-enginedevelopmentforprospectivevehicularapplicationsisalsounderway.Ifsuccessful,transportationsectormarketpenetrationwouldsubstantiallyimprovethecommercialoutlookforsolardish-Stirlingsystems.Thethirdapproachemploysafieldofsunlight-trackingparabolictroughsthatfocussunlightontothelinearaxisofthetrough.Aglassormetallinearreceiverisplacedalongthisaxis,andaworkingfluidiscirculatedthroughandheatedinthisreceiver.Thefluidfromafieldoftroughspassesthroughacentrallocationwherethermalenergyisextractedviaaheatexchangerandthenusedtodriveaconventionalturbine.Thisconfigurationlendsitselfwelltohybridoperationwithfossilfuelcombustionasasupplementalsourceofthermalenergy.Intheearly1980s,federalandCalifornia-statefinancialincentiveswereestablishedtoencouragethecommercialdeploymentanduseofemergingrenewables.Twotechnologieswereinapositiontobenefitfromtheseincentives:solarthermaltroughsandwindturbines.Troughsystemsweredeployedonacommercialbasisinthe1980sandearly1990s,andcontinuetooperatetoday.Inadditiontothegovernment-tax-creditincentives,theseplantswerepartiallysupportedbyabove-marketenergypaymentsthatarenolongeravailable.Hencetroughsystemshavenotbeenofferedcommerciallysince1991.Shouldconventionalenergycostsrisetotheabove-marketsupportlevelsofthelate1980s(whensignificantincreasesinoilpriceswerebeingprojected),orshouldsignificantincentivesforrenewableenergyariseinthenearfuture,troughtechnologywouldbeavailabletoplayanimportantroleinareaswithgoodsunlight.Inaddition,effortsareunderwaytorevivethistechnologyforuseindevelopingcountriesthathaveurgentneedsfornewelectricpowersources,suchasIndiaandMexico.Althoughthesolar-thermaltrough(andwind)systemsfieldedintheearly1980sexperiencedconsiderabletechnicaldifficulties,theoverallresultofthedeploymentsofthe1980sandtheassociatedexperienceandtechnicaldevelopmentwasthatbothtroughsystemsandwindsystems(seewinddiscussionbelow)hadachievedtechnicalandcommercialcredibilitybytheearly1990s.Energycostsfromthesesystemswereapproachingthecompetitiverangeforgridpower.Trough-energycostsweresomewhathigherthanwind-energycosts;but,owingtohybridizationwithnaturalgas,thetroughplantsweredispatchable.Hencetheirenergyhadhighervalueinsomeinstances.Windenergy,incontrast,wasavailableonlywhenthewindblew.Wind:Asmentionedabove,windpowersystemsprogressedsubstantiallyasaresultofthe1980sgovernmentincentives,withasteadytrendofcostreductionsthroughoutthe1980s.Since1990,thecostofenergyfromthewindhascontinuedtodecline,duetocontinueddeploymentandtopublic-privatedevelopmentprogramsintheU.S.and,toanevengreaterextent,inEurope.Windpowerisnowonthevergeofbecomingacommerciallyestablishedandcompetitivegrid-powertechnology.AlthoughexpansionoftheU.S.windmarkethasbeenslowedsincetheonsetofelectric-sectorrestructuringin1995,thewindmarketsinEuropeandelsewhereintheworldhavecontinuedtogrow,ledbyfirmsinDenmarkandGermany.ThegrowthofwindinEuropehasbeenfueled,inpart,byaggressivegoalsforrenewablepowerdeploymentinresponsetostrongpublicandpoliticalsupportforcleanenergyandgrowingconcernoverglobalclimatechange.AndtherearesignsthatthepaceofwinddeploymentintheU.S.isagainontherise.WiththeexceptionoftheSoutheast,mostregionsoftheU.S.havecommerciallyattractivewinds.Inadditiontowindresourcequality,otherissuesthatneedtobeconsidered,aswithmostcommercialpowerplants,aretransmissionrequirementsandpotentialenvironmentalimpacts.MostU.S.windfacilitiesinstalledtodatearewindfarmswithmanyturbinesinterconnectedtotheutilitytransmissiongridthroughadedicatedsubstation.Thereisgrowinginterestindistributedwindfacilities,withasmallnumberofturbinesconnecteddirectlytotheutilitydistributionsystemwithoutasubstation.Suchinstallationsaccountformorethanhalfoftheover4,000MWofwindinEurope,buttheU.S.todatehaslittleexperiencewiththismode.Hencethisdocumentfocusesoncentral-stationwindapplications.Thegreatmajorityofwindpowerexperiencehasbeenobtainedwiththetraditionalwindturbineconfiguration,inwhichtherotorrevolvesaboutahorizontalaxis.Inaddition,severaldevelopmentprogramsoft
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 印刷幫消防火災(zāi)應(yīng)急預(yù)案(3篇)
- 技術(shù)員信息處理考試的試題與答案的復(fù)盤(pán)
- 2025年網(wǎng)絡(luò)全景知識(shí)試題及答案
- 網(wǎng)絡(luò)管理員考試重點(diǎn)話(huà)題試題及答案
- 2025詳解合同購(gòu)買(mǎi)合同應(yīng)當(dāng)關(guān)注的法律問(wèn)題
- 項(xiàng)目溝通與協(xié)調(diào)技巧試題及答案
- 增強(qiáng)自我反思能力的修煉計(jì)劃
- VB語(yǔ)法基礎(chǔ)試題及答案解析
- 行政管理考試的復(fù)習(xí)計(jì)劃及試題及答案
- 2025軟考網(wǎng)絡(luò)優(yōu)化策略試題及答案
- 中學(xué)金融知識(shí)講座課件
- 2025涼山州繼續(xù)教育公需科目滿(mǎn)分答案-數(shù)字時(shí)代的心理健康
- 浙江百順?lè)b有限公司年產(chǎn)100萬(wàn)套服裝及135萬(wàn)套床上用品生產(chǎn)線(xiàn)項(xiàng)目環(huán)境影響報(bào)告
- 玻璃維修安裝合同協(xié)議
- 2024年中石油招聘考試真題
- 《抽水蓄能電站樞紐布置格局比選專(zhuān)題報(bào)告編制規(guī)程 》征求意見(jiàn)稿
- 校園景觀(guān)園林綠化植物配置設(shè)計(jì)
- 2024船用電氣電子產(chǎn)品型式認(rèn)可試驗(yàn)指南
- 融資融券指南
- 糞便DNA檢測(cè)研究-全面剖析
- 裝車(chē)安全協(xié)議合同
評(píng)論
0/150
提交評(píng)論