版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ArkeyWorks作者簡介歐幾里得(約公元前330年—前275年)古希臘數(shù)學(xué)家,被稱為“幾何之父”。他活躍于托勒密一世(公元前323年-前283年)時(shí)期的亞歷山大里亞,他最著名的著作《幾何原本》是歐洲數(shù)學(xué)的基礎(chǔ),提出五大公設(shè),發(fā)展歐幾里得幾何,被廣泛的認(rèn)為是歷史上最成功的教科書。除《幾何原本》外還有不少著作,如《已知數(shù)》,《糾錯(cuò)集》,《圓錐曲線論》,《曲面軌跡》,《觀測天文學(xué)》等,遺憾的是除《幾何原本》外這些都沒有留存下來消失在時(shí)空的黑暗之中了。ArkeyWorks作者簡介歐幾里得(約公元前330年—1ArkeyWorks
目錄第一卷幾何基礎(chǔ)第二卷幾何與代數(shù)第三卷圓與角第四卷圓與正多邊形第五卷比例第六卷相似第七卷數(shù)論(一)第八卷數(shù)論(二)第九卷數(shù)論(三)第十卷無理量第十一卷立體幾何第十二卷立體的測量第十三卷建正多面體ArkeyWorks2ArkeyWorks各卷簡介
第一卷:幾何基礎(chǔ)。重點(diǎn)內(nèi)容有三角形全等的條件,三角形邊和角的大小關(guān)系,平行線理論,三角形和多角形等積(面積相等)的條件,第一卷最后兩個(gè)命題是畢達(dá)哥拉斯定理的正逆定理;第二卷:幾何與代數(shù)。講如何把三角形變成等積的正方形;其中12、13命題相當(dāng)于余弦定理。第三卷:本卷闡述圓,弦,切線,割線,圓心角,圓周角的一些定理。第四卷:討論圓內(nèi)接和外切多邊形的做法和性質(zhì);第五卷:討論比例理論,多數(shù)是繼承自歐多克斯的比例理論,被認(rèn)為是"最重要的數(shù)學(xué)杰作之一"第六卷:講相似多邊形理論,并以此闡述了比例的性質(zhì)。第五、第七、第八、第九、第十卷:講述比例和算術(shù)的理論;第十卷是篇幅最大的一卷,主要討論無理量(與給定的量不可通約的量),其中第一命題是極限思想的雛形。第十一卷、十二、十三卷:最后講述立體幾何的內(nèi)容.從這些內(nèi)容可以看出,目前屬于中學(xué)課程里的初等幾何的主要內(nèi)容已經(jīng)完全包含在《幾何原本》里了。因此長期以來,人們都認(rèn)為《幾何原本》是兩千多年來傳播幾何知識的標(biāo)準(zhǔn)教科書。屬于《幾何原本》內(nèi)容的幾何學(xué),人們把它叫做歐幾里得幾何學(xué),或簡稱為歐氏幾何。ArkeyWorks各卷簡介
第一卷:幾何基礎(chǔ)。重點(diǎn)內(nèi)3ArkeyWorks書籍簡介
古希臘大數(shù)學(xué)家歐幾里德是與他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價(jià)值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動(dòng)人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識,歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個(gè)嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個(gè)古希臘數(shù)學(xué)的成果和精神于一書。既是數(shù)學(xué)巨著,又是哲學(xué)巨著,并且第一次完成了人類對空間的認(rèn)識。除《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。ArkeyWorks書籍簡介4在《幾何原本》中,歐幾里得首先給出了點(diǎn)、線、面、角、垂直、平行等定義,接著給出了關(guān)于幾何和關(guān)于量的十條公理,如“凡直角都相等”、“整體大于部分”以及后來引起的許多紛爭“平行線公理”等等。公理后面是一個(gè)一個(gè)的命題及其證明,內(nèi)容豐富多彩。公理化結(jié)構(gòu)是近代數(shù)學(xué)的主要特征而《幾何原本》則是公理化結(jié)構(gòu)的最早典范。歐幾里得創(chuàng)造性的總結(jié)了他以前的古希臘數(shù)學(xué),將零散的,不連貫的數(shù)學(xué)知識整理起來加上自己的大量創(chuàng)造,構(gòu)造出彼此內(nèi)在聯(lián)系的有機(jī)的宏大大廈。本書共分為13卷,有5條公設(shè)、五條公理、119個(gè)定義和465個(gè)命題,構(gòu)成歷史上的一個(gè)數(shù)學(xué)公理體系。在《幾何原本》中,歐幾里得首先給出了點(diǎn)、線、面、角、5作為基礎(chǔ)的五條公理和公設(shè)
五條公理1.等于同量的量彼此相等;2.等量加等量,其和相等;3.等量減等量,其差相等;4.彼此能重合的物體是全等的;5.整體大于部分。五條公設(shè)1.過兩點(diǎn)能作且只能作一直線;2.線段(有限直線)可以無限地延長;3.以任一點(diǎn)為圓心,任意長為半徑,可作一圓;4.凡是直角都相等;5.同平面內(nèi)一條直線和另外兩條直線相交,若在直線同側(cè)的兩個(gè)內(nèi)角之和小于180°,則這兩條直線經(jīng)無限延長后在這一側(cè)一定相交。最后一條公設(shè)就是著名的平行公設(shè),或者叫做第五公設(shè)。它引發(fā)了幾何史上最著名的長達(dá)兩千多年的關(guān)于“平行線理論”的討論,并最終誕生了非歐幾何。值得注意的是,第五公設(shè)既不能說是正確也不能說是錯(cuò)誤,它所概括的是一種情況。非歐幾何則在推翻第五公設(shè)的前提下進(jìn)行了另外情況的討論。作為基礎(chǔ)的五條公理和公設(shè)6重要的命題命題Ⅰ.47在直角三角形中以斜邊為邊的正方形面積等于以兩直角邊為邊的正方形面積之和(兩直角邊的平方和等于斜邊的平方)重要的命題命題Ⅰ.47在直角三角形中以斜邊為邊的正方形面7《幾何原本》的意義和影響
在幾何學(xué)上的影響和意義
在幾何學(xué)發(fā)展的歷史中,歐幾里得的《幾何原本》起了重大的歷史作用。這
種作用歸結(jié)到一點(diǎn),就是提出了幾何學(xué)的“根據(jù)”和它的邏輯結(jié)構(gòu)的問題。在他寫的《幾何原本》中,就是用邏輯的鏈子由此及彼的展開全部幾何學(xué),這項(xiàng)工作,前人未曾作到。《幾何原本》的誕生,標(biāo)志著幾何學(xué)已成為一個(gè)有著比較嚴(yán)密的理論系統(tǒng)和科學(xué)方法的學(xué)科。并且《幾何原本》中的命題1.47,證明了是歐幾里德最先發(fā)現(xiàn)的勾股定理,從而說明了歐洲是最早發(fā)現(xiàn)勾股定理的大洲?!稁缀卧尽返囊饬x和影響
在幾何學(xué)上的影響和意義8論證方法上的影響
關(guān)于幾何論證的方法,歐幾里得提出了分析法、綜合法和歸謬法。所謂分析法就是先假設(shè)所要求的已經(jīng)得到了,分析這時(shí)候成立的條件,由此達(dá)到證明的步驟;綜合法是從以前證明過的事實(shí)開始,逐步的導(dǎo)出要證明的事項(xiàng);歸謬法是在保留命題的假設(shè)下,否定結(jié)論,從結(jié)論的反面出發(fā),由此導(dǎo)出和已證明過的事實(shí)相矛盾或和已知條件相矛盾的結(jié)果,從而證實(shí)原來命題的結(jié)論是正確的,也稱作反證法。論證方法上的影響9作為教材的影響
從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。少年時(shí)代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開始他認(rèn)為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認(rèn)真地去讀它,而對笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺(tái)獎(jiǎng)學(xué)金考試的時(shí)候遭到落選,當(dāng)時(shí)的考官巴羅博士對他說:“因?yàn)槟愕膸缀位A(chǔ)知識太貧乏,無論怎樣用功也是不行的?!边@席談話對牛頓的震動(dòng)很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。作為教材的影響
從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了10對《幾何原本》的評價(jià)
徐光啟在評論《幾何原本》時(shí)說過:“此書為益能令學(xué)理者祛其浮氣,練其精心;學(xué)事者資其定法,發(fā)其巧思,故舉世無一人不當(dāng)學(xué)。”其大意是:讀《幾何原本》的好處在于能去掉浮夸之氣,練就精思的習(xí)慣,會(huì)按一定的法則,培養(yǎng)巧妙的思考。所以全世界人人都要學(xué)習(xí)幾何。徐光啟同時(shí)也說過:“能精此書者,無一事不可精;好學(xué)此書者
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國自主機(jī)器人街道吸塵器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025年全球及中國微波波導(dǎo)衰減器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025下水道施工合同
- 2025韶關(guān)市項(xiàng)目移交合作協(xié)議終止合同
- 2025亞糧集團(tuán)宿州市埇橋區(qū)農(nóng)產(chǎn)品智慧物流園區(qū)項(xiàng)目投資合同書
- 監(jiān)控安裝工程施工合同
- 2025樹苗栽培承包合同
- 2025年外研版選修3歷史下冊月考試卷含答案
- 職業(yè)經(jīng)理人合作合同協(xié)議書范本
- 2025勞動(dòng)合同常用版本范文
- 《中國心力衰竭診斷和治療指南(2024)》解讀完整版
- 《檔案管理課件》課件
- 2025年中考物理終極押題猜想(新疆卷)(全解全析)
- 脛骨骨折的護(hù)理查房
- 抽水蓄能電站項(xiàng)目建設(shè)管理方案
- 電動(dòng)工具培訓(xùn)課件
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 視頻會(huì)議室改造方案
- 【中考真題】廣東省2024年中考語文真題試卷
- GB/T 32399-2024信息技術(shù)云計(jì)算參考架構(gòu)
- 2025年湖南省長沙市中考數(shù)學(xué)模擬試卷(附答案解析)
評論
0/150
提交評論