第3章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 復習公開課一等獎課件省賽課獲獎課件_第1頁
第3章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 復習公開課一等獎課件省賽課獲獎課件_第2頁
第3章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 復習公開課一等獎課件省賽課獲獎課件_第3頁
第3章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 復習公開課一等獎課件省賽課獲獎課件_第4頁
第3章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 復習公開課一等獎課件省賽課獲獎課件_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第3章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)復習課件第1頁一、知識網(wǎng)絡整體構建二、重點歸納主干梳理三、題型探究重點突破欄目索引第2頁返回知識網(wǎng)絡整體構建第3頁知識點一指數(shù)函數(shù)與對數(shù)函數(shù)性質

指數(shù)函數(shù)對數(shù)函數(shù)定義y=ax(a>0,a≠1)叫指數(shù)函數(shù)y=logax(a>0,a≠1)叫對數(shù)函數(shù)定義域R(0,+∞)值域(0,+∞)R圖象重點歸納主干梳理第4頁性質(1)圖象通過(0,1)點,(2)a>1,當x>0時,y>1;當x<0時,0<y<1.0<a<1,當x>0時,0<y<1;當x<0時,y>1.(3)a>1,y=ax在R上為增函數(shù),0<a<1,y=ax在R上為減函數(shù)(1)圖象通過(1,0)點,(2)a>1,當x>1時,y>0;當0<x<1時,y<0.0<a<1,當x>1時,y<0;當0<x<1時,y>0.(3)a>1,在(0,+∞)上y=logax為增函數(shù),0<a<1,在(0,+∞)上y=logax為減函數(shù)第5頁(1)所有冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1);(2)假如α>0,則冪函數(shù)圖象過原點,并且在區(qū)間[0,+∞)上為增函數(shù);(3)假如α<0,則冪函數(shù)圖象在區(qū)間(0,+∞)上是減函數(shù),在第一象限內,當x從右邊趨向于原點時,圖象在y軸右方無限地逼近y軸,當x從原點趨向于+∞時,圖象在x軸上方無限地逼近x軸;(4)當α為奇數(shù)時,冪函數(shù)為奇函數(shù);當α為偶數(shù)時,冪函數(shù)為偶函數(shù).知識點二冪函數(shù)y=xα性質第6頁知識點三函數(shù)零點與方程根函數(shù)零點與方程根之間存在著緊密關系:方程f(x)=0有實數(shù)根?函數(shù)y=f(x)圖象與x軸有交點?函數(shù)y=f(x)有零點.假如函數(shù)y=f(x)在區(qū)間[a,b]上圖象是連續(xù)不停一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0根.第7頁知識點四函數(shù)模型及其應用返回處理函數(shù)應用題關鍵在于理解題意,提升閱讀能力.一方面要加強對常見函數(shù)模型理解,弄清其產(chǎn)生實際背景,把數(shù)學問題生活化;另一方面,要不停拓寬知識面.求解函數(shù)應用問題思緒和辦法,我們能夠用示意圖表達為第8頁題型一有關指數(shù)、對數(shù)運算問題指數(shù)與指數(shù)運算、對數(shù)與對數(shù)運算是兩個主要知識點,不但是本章考查主要題型,也是高考必考內容.指數(shù)式運算首先要注意化簡次序,一般負指數(shù)先轉化成正指數(shù),根式化為指數(shù)式;其次若出現(xiàn)分式,則要注意把分子、分母因式分解以達成約分目標.對數(shù)運算首先要注意公式應用過程中范圍變化,前后要等價;其次要純熟地利用對數(shù)三個運算性質,并根據(jù)詳細問題合理利用對數(shù)恒等式和換底公式等.換底公式是對數(shù)計算、化簡、證明常用公式,一定要掌握并靈活利用.

題型探究重點突破第9頁解析答案第10頁解析答案=2-9=-7.第11頁解析答案第12頁題型二指數(shù)函數(shù)、對數(shù)函數(shù)及冪函數(shù)圖象與性質函數(shù)圖象是研究函數(shù)性質前提和基礎,它較形象直觀地反應了函數(shù)一切性質.教材對冪、指、對三個函數(shù)性質研究也正好體現(xiàn)了由圖象到性質,由詳細到抽象過程,突出了函數(shù)圖象在研究對應函數(shù)性質時作用.第13頁

解析答案(1)畫出函數(shù)f(x)圖象;第14頁解析答案(2)根據(jù)圖象寫出f(x)單調區(qū)間,并寫出函數(shù)值域.解函數(shù)f(x)單調遞增區(qū)間為(-∞,0),單調遞減區(qū)間為[0,+∞),值域為(0,1].第15頁解析答案跟蹤演練2

(1)函數(shù)f(x)=lnx圖象與函數(shù)g(x)=x2-4x+4圖象交點個數(shù)為________.解析作出兩個函數(shù)圖象,利用數(shù)形結合思想求解.g(x)=x2-4x+4=(x-2)2,在同一平面直角坐標系內畫出函數(shù)f(x)=lnx與g(x)=(x-2)2圖象(如圖).由圖可得兩個函數(shù)圖象有2個交點.2第16頁解析由3x-1≠0得x≠0,③解析答案第17頁題型三比較大小比較幾個數(shù)大小問題是指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)主要應用,其基本辦法是:將需要比較大小幾個數(shù)視為某類函數(shù)函數(shù)值,其主要辦法可分下列三種:(1)根據(jù)函數(shù)單調性(如根據(jù)一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)單調性),利用單調性定義求解;(2)采取中間量辦法(事實上也要用到函數(shù)單調性),常用中間量如0,1,-1等;(3)采取數(shù)形結合辦法,通過函數(shù)圖象處理.第18頁解析答案a<b<c第19頁跟蹤訓練3

(1)判斷大?。簂og32,log23,log25,__________________.(按從小到大排列)解析答案解析由于log31<log32<log33,log22<log23<log25,即0<log32<1,1<log23<log25,因此log32<log23<log25.log32<log23<log25第20頁解析答案即y>x>z.y>x>z第21頁題型四函數(shù)零點與方程根關系及應用根據(jù)函數(shù)零點定義,函數(shù)y=f(x)零點就是方程f(x)=0根,判斷一種方程是否有零點,有幾個零點,就是判斷方程f(x)=0是否有根,有幾個根.從圖形上說,函數(shù)零點就是函數(shù)y=f(x)圖象與x軸交點橫坐標,函數(shù)零點、方程根、函數(shù)圖象與x軸交點橫坐標三者之間有著內在本質聯(lián)系,利用它們之間關系,能夠處理很多函數(shù)、方程與不等式問題.在考試中有許多問題包括三者互相轉化,應引發(fā)我們重視.第22頁<解析答案第23頁解析建立函數(shù)g(x)=x3-22-x,計算判斷g(0)、g(1)、g(2)、g(3)、g(4)符號.設g(x)=x3-22-x,顯然g(1)·g(2)<0,于是函數(shù)g(x)零點,②解析答案第24頁數(shù)形結合思想處理思想辦法在解數(shù)學問題時,將抽象數(shù)學語言與直觀圖形結合起來,就是使抽象思維和形象思維聯(lián)系在一起,實現(xiàn)抽象概念與詳細圖象之間互相轉化,即數(shù)量關系轉化為圖形性質或者把圖形性質轉化為數(shù)量關系來研究.第25頁解析答案解析易知函數(shù)f(x)圖象如圖所示:由圖可知0<k<1.0<k<1第26頁由圖可知每組中兩圖象各有一種交點,它們橫坐標就是三個函數(shù)零點,由圖可知:x3>x2>x1.解析答案x3>x2>x1第27頁轉化與化歸思想處理思想辦法轉化是將數(shù)學命題由一種形式轉向另一種形式轉換過程;化歸是將待處理問題通過某種轉化過程,歸結為一類已處理或比較容易處理問題.在處理函數(shù)問題時,常進行數(shù)與形或數(shù)與數(shù)轉化,從而達成處理問題目標.第28頁例6

設a∈R,試討論有關x方程lg(x-1)+lg(3-x)=lg(a-x)實根個數(shù).解析答案第29頁整頓得-x2+5x-3=a(1<x<3).在同一平面直角坐標系中分別作出函數(shù)y=a,及y=-x2+5x-3,x∈(1,3)圖象,如圖所示.解析答案第30頁第31頁跟蹤訓練6

當a為何值時,函數(shù)y=7x2-(a+13)x+a2-a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論