




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ComputationalChemistryG.H.CHENDepartmentofChemistryUniversityofHongKongIn1929,Diracdeclared,“Theunderlyingphysicallawsnecessaryforthemathematicaltheoryof...thewholeofchemistryarethuscompletelyknow,andthedifficultyisonlythattheexactapplicationoftheselawsleadstoequationsmuchtoocomplicatedtobesoluble.”BeginningofComputationalChemistryTheoryisreality! W.A.GoddardIIIDiracComputationalChemistryQuantumChemistryMolecularMechanicsBioinformatics
Create&AnalyseBio-information
Schr?dingerEquationF=MaMulliken,1966Fukui,1981Hoffmann,1981Pople,1998Kohn,1998NobelPrizesforComputationalChemsitryComputationalChemistryIndustryCompanySoftwareGaussianInc. Gaussian94,Gaussian98Schr?dingerInc. JaguarWavefunction SpartanQ-Chem Q-ChemAccelrys InsightII,Cerius2HyperCube HyperChemCeleraGenomics(Dr.CraigVenter,formalProf.,SUNY,Baffalo;98-01)Applications:materialdiscovery,drugdesign&researchR&DinChemical&Pharmaceuticalindustriesin2000:US$80billionBioinformatics:TotalSalesin2001 US$225million ProjectSalesin2006 US$1.7billionLODESTARv1.02--LocalizedDensityMatrix:STARperformerhttp://yangtze.hku.hkSoftwareDevelopmentatHKUQuantumChemistryMethodsAbinitiomolecularorbitalmethodsSemiempiricalmolecularorbitalmethodsDensityfunctionalmethodH
y=E
ySchr?dingerEquationHamiltonianH=
(-h2/2ma)
2-(h2/2me)
i
i2
+
ZaZbe2/rab-
i
Zae2/ria
+
i
j
e2/rijWavefunctionEnergyVitaminCC60CytochromechemeOH+D2-->HOD+D
energyC60andSuperconductorApplications:Magnet,Magnetictrain,PowertransportationWhatissuperconductor?ElectricalCurrentflowsforever!SoccerBallCrystalStructureofC60solidCrystalStructureofK3C60
K3C60isaSuperconductor(Tc=19K)Erwin&Pickett,Science,1991GHChen,Ph.D.Thesis,Caltech(1992)VibrationSpectrumofK3C60EffectiveAttraction!VibrationofAtomsThemechanismofsuperconductivityinK3C60wasdiscoveredusingcom-putationalchemistrymethodsVarmaet.al.,1991;Schluteret.al.,1992;Dresselhauset.al.,1992;Chen&Goddard,1992CarbonNanotubes(Ijima,1991)STMImageofCarbonNanotubes(Wildoeret.al.,1998)CalculatedSTMImageofaCarbonNanotube(Rubio,1999)ComputerSimulations(Saito,Dresselhaus,Louieet.al.,1992)CarbonNanotubes(n,m): Conductor, ifn-m=3II=0,±1,±2,±3,…;or Semiconductor,ifn-m
3IMetallicCarbonNanotubes: ConductingWiresSemiconductingNanotubes: TransistorsMolecular-scalecircuits! 1nmtransistor!0.13μmtransistor!30nmtransistor!Wildoer,Venema,Rinzler,Smalley,Dekker,Nature391,59(1998)ExperimentalConfirmations:Lieberet.al.1993;Dravidet.al.,1993;Iijimaet.al.1993;Smalleyet.al.1998;Haddonet.al.1998;Liuet.al.1999Science9thNovember,2001Logicgates(andcircuits)withcarbonnanotucetransistorScience7thJuly,2000Carbonnanotube-BasednonvolatileRAMformolecularcomputingNanoelectromechanicalSystems(NEMS)K.E.Drexler,Nanosystems:MolecularMachinery,ManufacturingandComputation(Wiley,NewYork,1992).LargeGearDrivesSmallGearG.Honget.al.,1999Nano-oscillatorsZhao,Ma,Chen&Jiang,Phys.Rev.Lett.2003NanoscopicElectromechanicalDevice (NEMS)HibernationAwakeningOscillationQuantummechanicalinvestigationofthefieldemissionfromthetipsofcarbonnanotubesZettl,PRL2001Zheng,Chen,Li,Deng&Xu,Phys.Rev.Lett.2004Computer-AidedDrugDesignGENOMICSHumanGenomeProjectDrugDiscoveryALDOSEREDUCTASEDiabetesDiabeticComplicationsGlucoseSorbitolDesignofAldoseReductaseInhibitorsAldoseReductaseInhibitorHu&Chen,2003DatabaseforFunctionalGroupsLogIC50:0.6382,1.0LogIC50:0.6861,0.88
Prediction:DrugLeadsStructure-activity-relationLogIC50:0.77,1.1LogIC50:-1.87,4.05LogIC50:-2.77,4.14LogIC50:0.68,0.88PredictionResultsusingAutoDockHu&Chen,2003Computer-aideddrugdesignChemicalSynthesisScreeningusinginvitroassayAnimalTestsClinicalTrialsBioinformaticsImprovecontent&utilityofbio-databasesDeveloptoolsfordatageneration,capture&annotationDeveloptoolsforcomprehensivefunctionalstudiesDeveloptoolsforrepresenting&analyzingsequencesimilarity&variationComputationalChemistryIncreasinglyimportantfieldinchemistryHelptounderstandexperimentalresultsProvideguidelinestoexperimentistsApplicationinMaterials&PharmaceuticalindustriesFuture:simulatenano-sizematerials,bulkmaterials;replaceexperimentalR&DObjective:Moreandmoreresearch&developmenttobeperformedoncomputersandInternetinsteadinthelaboratoriesQuantumChemistryG.H.ChenDepartmentofChemistryUniversityofHongKongContributors:
Hartree,Fock,Slater,Hund,Mulliken,Lennard-Jones,Heitler,London,Brillouin,Koopmans,Pople,KohnApplication:
Chemistry,CondensedMatterPhysics,MolecularBiology,MaterialsScience,DrugDiscoveryEmphasis
Hartree-Fockmethod Concepts Hands-onexperienceTextBook
“QuantumChemistry”,4thEd. IraN.Levinehttp://yangtze.hku.hk/lecture/chem3504-3.pptContents
1.VariationMethod2.Hartree-FockSelf-ConsistentFieldMethod3.PerturbationTheory4.SemiempiricalMethodsTheVariationMethodConsiderasystemwhoseHamiltonianoperatorHistimeindependentandwhoselowest-energyeigenvalueisE1.Iffisanynormalized,well-behavedfunctionthatsatisfiestheboundaryconditionsoftheproblem,then
f*H
fdt>
E1ThevariationtheoremProof:Expandfinthebasisset{yk}
f=
k
akykwhere
{ak}arecoefficients
Hyk=Ekykthen
f*H
fdt=
k
j
ak*ajEjdkj
=
k|ak|2
Ek
>E1
k|ak|2=E1
Sinceisnormalized,
f*fdt=
k|ak|2=1
i.f:trialfunctionisusedtoevaluatetheupperlimit
ofgroundstateenergyE1ii.f
=groundstatewavefunction,
f*H
fdt=E1iii.optimizeparamemtersinfbyminimizing
f*H
fdt/
f*fdt
Requirementsforthetrialwavefunction:i.zeroatboundary;ii.smoothness
amaximuminthecenter.
Trialwavefunction:f=x(l-x)Applicationtoaparticleinaboxofinfinitedepth0l
*H
dx=-(h2/8
2m)
(lx-x2)d2(lx-x2)/dx2dx =h2/(4
2m)
(x2-lx)
dx =h2l3/(24
2m)
*
dx=
x2(l-x)2dx=l5/30 E
=5h2/(4
2l2m)
h2/(8ml2)=E1(1)Constructawavefunction
(c1,c2,
,cm)(2)Calculatetheenergyof
:
E
E
(c1,c2,
,cm)(3)Choose{cj*}(i=1,2,
,m)sothatE
isminimum
VariationalMethodExample:one-dimensionalharmonicoscillator
Potential:V(x)=(1/2)kx2=(1/2)m
2x2=2
2m
2x2Trialwavefunctionforthegroundstate:
(x)=exp(-cx2)
*H
dx=-(h2/8
2m)
exp(-cx2)d2[exp(-cx2)]/dx2dx+2
2m
2
x2exp(-2cx2)dx=(h2/4
2m)(
c/8)1/2+
2m
2(
/8c3)1/2
*
dx=
exp(-2cx2)dx=(
/2)1/2c-1/2 E
=W=(h2/8
2m)c+(
2/2)m
2/cTominimizeW, 0=dW/dc=h2/8
2m-(
2/2)m
2c-2 c=2
2
m/h W
=(1/2)h
. . .
E3
y3 E2
y2 E1
y1ExtensionofVariationMethodForawavefunctionfwhichisorthogonaltothegroundstatewavefunctiony1,i.e.
dt
f*y1=0Ef=
dt
f*Hf/
dt
f*f
>
E2
thefirstexcitedstateenergyThetrialwavefunctionf:
dt
f*y1=0
f=
k=1ak
yk
dt
f*y1=|a1|2=0
Ef=
dt
f*Hf/
dt
f*f=
k=2|ak|2Ek/
k=2|ak|2
>
k=2|ak|2E2/
k=2|ak|2=E2
e
++
y1y2f=c1y1+c2y2W=
f*Hfdt/
f*fdt
=(c12
H11+2c1c2
H12
+c22
H22)/(c12+2c1c2
S
+c22)
W(c12+2c1c2
S
+c22)=c12
H11+2c1c2
H12
+c22
H22ApplicationtoH2+Partialderivativewithrespecttoc1
(
W/
c1=0):
W(c1+Sc2)=c1H11+c2H12
Partialderivativewithrespecttoc2
(
W/
c2=0):W(Sc1+c2)=c1H12+c2H22
(H11-W)c1+(H12-SW)c2=0(H12-SW)c1+(H22-
W)c2=0Tohavenontrivialsolution:
H11-W H12-SW H12-SW H22-
W
ForH2+,
H11=H22;H12<0.
GroundState:Eg=W1=(H11+H12)/(1+S)
f1
=(y1+y2)/
2(1+S)1/2
ExcitedState:Ee=W2=(H11-H12)/(1-S)
f2
=(y1-y2)/
2(1-S)1/2
=0bondingorbitalAnti-bondingorbital
Results:De=1.76eV,Re=1.32A
Exact:De=2.79eV,Re=1.06A
1eV=23.0605kcal/molTrialwavefunction:k3/2
p-1/2
exp(-kr)
Eg=W1(k,R)
ateachR,choosek
sothat
W1/
k=0Results: De=2.36eV,Re=1.06A
Resutls:De=2.73eV,Re=1.06A1s2pInclusionofotheratomicorbitalsFurtherImprovements
H p-1/2
exp(-r)He+ 23/2
p-1/2
exp(-2r)Optimizationof1sorbitals
a11x1+a12x2=b1a21x1+a22x2=b2
(a11a22-a12a21)x1=b1a22-b2a12(a11a22-a12a21)x2=b2a11-b1a21LinearEquations1.twolinearequationsfortwounknown,x1andx2Introducingdeterminant:
a11 a12
=a11a22-a12a21 a21 a22
a11 a12
b1 a12
x1= a21 a22
b2 a22
a11 a12
a11 b1
x2=
a21 a22
a21 b2
Ourcase:b1=b2=0,homogeneous
1.trivialsolution:x1=x2=0
2.nontrivialsolution:
a11 a12
=0 a21 a22
nlinearequationsfornunknownvariablesa11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2an1x1+an2x2+...+annxn=bn
a11 a12 ...a1,k-1b1a1,k+1 ...a1n a21 a22 ...a2,k-1b2a2,k+1 ...a2ndet(aij)xk=. . .... .. .... an1 an2 ...an,k-1b2an,k+1 ...ann
where, a11 a12 ... a1n
a21 a22 ... a2n
det(aij)= . . ... . an1 an2 ... ann
a11 a12 ... a1,k-1 b1 a1,k+1 ... a1n a21 a22 ... a2,k-1 b2 a2,k+1 ... a2n . . ... . . . ... . an1 an2 ... an,k-1 b2 an,k+1 ... annxk= det(aij)
inhomogeneouscase:bk=0foratleastonek(a)travialcase:xk=0,k=1,2,...,n(b)nontravialcase:det(aij)=0
homogeneouscase:bk=0,k=1,2,...,nForan-thorderdeterminant, ndet(aij)=
alkClkl=1
where,ClkiscalledcofactorTrialwavefunctionfisavariationfunctionwhichisacombinationofnlinearindependentfunctions{f1,f2,...fn},
f=c1f1+c2f2+...+cnfn
n
[(Hik-SikW)ck]=0i=1,2,...,n
k=1 Sik
dt
fifk Hik
dt
fiHfk W
dtfH
f/
dtff
(i)W1
W2
...
Wn
arenrootsofEq.(1),(ii)E1
E2
...
En
En+1
...areenergies
ofeigenstates;
then,W1
E1,W2
E2,...,Wn
EnLinearvariationaltheoremMolecularOrbital(MO):
=c1
1+c2
2
(H11-W)c1+(H12-SW)c2=0
S11=1
(H21-SW)c1+(H22-W)c2=0
S22=1Generally:
i
asetofatomicorbitals,basissetLCAO-MO
=c1
1+c2
2++cn
nlinearcombinationofatomicorbitalsn
(Hik-SikW)ck=0i=1,2,,nk=1Hik
dt
i*H
k
Sik
dt
i*
k Skk=1Hamiltonian
H=
(-h2/2ma)
2-(h2/2me)
i
i2
+
ZaZbe2/rab-
i
Zae2/ria
+
i
j
e2/rij
Hy(ri;ra)=Ey(ri;ra)TheBorn-OppenheimerApproximation(1)y(ri;ra)=yel(ri;ra)yN(ra)(2)Hel(ra)=-(h2/2me)
i
i2
-
i
Zae2/ria
+
i
j
e2/rij
VNN=
bZaZbe2/rabHel(ra)
yel(ri;ra)=Eel(ra)
yel(ri;ra)(3)HN=
(-h2/2ma)
2+
U(ra)U(ra)=Eel(ra)+VNNHN(ra)
yN(ra)=EyN(ra)TheBorn-OppenheimerApproximation:AssignmentCalculatethegroundstateenergyandbondlengthofH2usingtheHyperChemwiththe6-31G(Hint:Born-OppenheimerApproximation)
e
++
etwoelectronscannotbeinthesamestate.HydrogenMoleculeH2ThePauliprincipleSincetwowavefunctionsthatcorrespondtothesamestatecandifferatmostbyaconstantfactor
f(1,2)=c2
f(2,1)
ja(1)jb(2)+c1ja(2)jb(1)=c2ja(2)jb(1)+c2c1ja(1)jb(2)c1=c2 c2c1=1Therefore:
c1=c2=
1AccordingtothePauliprinciple, c1=c2=-1Wavefunction:f(1,2)=ja(1)jb(2)+c1ja(2)jb(1)f(2,1)=ja(2)jb(1)+c1ja(1)jb(2)
WavefunctionfofH2:
y(1,2)=1/
2![f(1)a(1)f(2)b(2)-f(2)a(2)f(1)b(1)]f(1)a(1)f(2)a(2)=1/
2!
f(1)b(1)f(2)b(2)ThePauliprinciple(differentversion)thewavefunctionofasystemofelectronsmustbeantisymmetricwithrespecttointerchangingofanytwoelectrons.SlaterDeterminantE
=2
dt1f*(1)(Te+VeN)f(1)+VNN
+
dt1dt2|f2(1)|e2/r12|f2(2)|=
i=1,2
fii+J12+VNN
TominimizeE
undertheconstraint
dt|f2|
=1,use
Lagrange’smethod:
L=E
-2e[
dt1|f2(1)|
-1]dL=dE
-4e
dt1f*(1)df(1)
=4
dt1df*(1)(Te+VeN)f(1)+4
dt1dt2f*(1)f*(2)e2/r12f(2)df(1) -4e
dt1f*(1)df(1)=0
Energy:E
[Te+VeN+
dt2f*(2)e2/r12f(2)]f(1)=ef(1)
(f+J)f=eff(1)=Te(1)+VeN(1) oneelectronoperatorJ(1)=
dt2f*(2)e2/r12f(2)twoelectronCoulomboperator
AverageHamiltonianHartree-Fockequationf(1)istheHamiltonianofelectron1intheabsenceofelectron2;J(1)isthemeanCoulombrepulsionexertedonelectron1by2;e
istheenergyoforbitalf.LCAO-MO: f=c1y1+c2y2
Multipley1fromtheleftandthenintegrate:c1F11+c2F12=e(c1+Sc2)Multipley2
fromtheleftandthenintegrate:
c1F12+c2F22=e(Sc1+c2)
where,
Fij=
dtyi*
(f+J
)yj=Hij+
dtyi*
J
yjS=
dty1
y2 (F11-e)c1+(F12-Se)c2=0 (F12-Se)c1+(F22-
e)c2=0SecularEquation:
F11-e
F12-Se
=0
F12-Se
F22-
e
bondingorbital: e1=(F11+F12)/(1+S)
f1
=(y1+y2)/
2(1+S)1/2
antibondingorbital: e2=(F11-F12)/(1-S)
f2
=(y1-y2)/
2(1-S)1/2MolecularOrbitalConfigurationsofHomonuclearDiatomicMoleculesH2,Li2,O,He2,etcMoeculeBondorderDe/eVH2+
2.79
H214.75He2+1.08He200.0009Li211.07Be200.10C226.3N2+
8.85N239.91O2+26.78O225.21ThemoretheBondOrderis,thestrongerthechemicalbondis.BondOrder:one-halfthedifferencebetweenthenumberofbondingandantibondingelectrons
f1
f2
f1(1)a(1)f2(1)a(1)y(1,2)=1/
2
f1(2)a(2)f2(2)a(2)=1/
2[f1(1)f2(2)-f2(1)
f1(2)]a(1)a(2)
Ey=
dt1dt2y*Hy=
dt1dt2y*(T1+V1N+T2+V2N+V12+VNN)y=<f1(1)|T1+V1N|f1(1)>+<f2(2)|T2+V2N|f2(2)>+<f1(1)f2(2)|V12|f1(1)f2(2)>-<f1(2)f2(1)|V12|f1(1)f2(2)>+VNN=
i
<fi(1)|T1+V1N|fi(1)>
+<f1(1)f2(2)|V12|f1(1)f2(2)>-<f1(2)f2(1)|V12|f1(1)f2(2)>+
VNN=
i=1,2
fii+J12-
K12+VNNParticleOne:
f(1)+J2(1)
-
K2(1)ParticleTwo: f(2)+J1(2)
-
K1(2)
f(j)
-(h2/2me)
j2-
Za/rja
Jj(1)q(1)
q(1)
dr2fj*(2)e2/r12fj(2)
Kj(1)q(1)
fj(1)
dr2fj*(2)e2/r12q(2)AverageHamiltonian[f(1)+J2(1)-
K2(1)]f1(1)=e1f1(1)[f(2)+J1(2)-
K1(2)]f2(2)=e2f2(2)F(1)
f(1)+J2(1)-
K2(1) Fockoperatorfor1F(2)
f(2)+J1(2)-
K1(2) Fockoperatorfor2
Hartree-FockEquation:FockOperator:1. AttheHartree-FockLeveltherearetwopossible Coulombintegralscontributingtheenergybetween twoelectronsiandj:CoulombintegralsJijand exchangeintegralKij;
2. Fortwoelectronswithdifferentspins,thereisonly CoulombintegralJij;3.Fortwoelectronswiththesamespins,both Coulombandexchangeintegralsexist. Summary4. TotalHartree-Fockenergyconsistsofthe contributionsfromone-electronintegralsfiiand two-electronCoulombintegralsJijandexchange integralsKij;
5. AttheHartree-FockLeveltherearetwopossible Coulombpotentials(oroperators)betweentwo electronsiandj:Coulomboperatorandexchange operator;Jj(i)istheCoulombpotential(operator) thatifeelsfromj,andKj(i)istheexchange potential(operator)thatthatifeelsfromj.
6.Fockoperator(or,averageHamiltonian)consistsofone-electronoperatorsf(i)andCoulomboperatorsJj(i)
andexchangeoperatorsKj(i)
Na
electronsspinupandNb
electronsspindown.
Fockmatrixforanelectron1
withspinup:
Fa(1
)=fa(1
)+
j[Jja(1
)-Kja(1
)]+
j
Jjb(1
)
j=1
,Na
j=1
,Nb
Fockmatrixforanelectron1
withspindown:
Fb(1
)=fb(1
)+
j[Jjb(1
)-Kjb(1
)]+
j
Jja(1
) j=1
,Nb
j=1
,Na
f(1)
-(h2/2me)
12-
NZN/r1N
Jja(1)
dr2fja*(2)
e2/r12fja(2)Kja(1)q(1)
fja(1)
dr2fja*(2)e2/r12q(2)
Energy=
ja
fjja+
jb
fjjb+(1/2)
ia
ja(Jijaa
-Kijaa)+(1/2)
ia
jb(Jijbb
-Kijbb)+
ia
jb
Jijab
+VNNi=1,Na
j=1,Nbfjj
fjja
<fja|f|fja>Jij
Jijaa
<faj(2)|Jia(1)
|faj(2)>Kij
Kijaa
<faj(2)|Kia(1)
|faj(2)>Jij
Jijab
<fbj(2)|Jia(1)
|fbj(2)>
F(1)=f(1)+
j=1,n/2[2Jj(1)-Kj(1)]
Energy=2
j=1,n/2
fjj+
i=1,n/2
j=1,n/2(2Jij
-Kij)+VNNClosesubshellcase:(Na=Nb=n/2)1.Many-BodyWaveFunctionisapproximated bySlaterDeterminant2.Hartree-FockEquation F
fi=eifi
F
Fockoperator fi thei-thHartree-Fockorbital ei theenergyofthei-thHartree-FockorbitalHartree-FockMethod3.RoothaanMethod(introductionofBasisfunctions)fi
=
kcki
yk LCAO-MO
{yk}
isasetofatomicorbitals(orbasisfunctions)4.Hartree-Fock-Roothaan
equation
j(Fij-eiSij)cji=0
Fij
<
i|F|
j> Sij
<
i|
j>5.SolvetheHartree-Fock-Roothaanequation
self-consistently
<fa(1)fb(2)fc(3)...fd(n)|f(1)|fe(1)ff(2)fg(3)...fh(n)>=<fa(1)|f(1)|fe(1)><fb(2)fc(3)...fd(n)|ff(2)fg(3)...fh(n)>=<fa(1)|f(1)|fe(1)>
if
b=f,c=g,...,d=h;0,otherwise
<fa(1)fb(2)fc(3)...fd(n)|V12|fe(1)ff(2)fg(3)...fh(n)>=<fa(1)fb(2)|V12|fe(1)ff(2)><fc(3)...fd(n)|fg(3)...fh(n)>=<fa(1)fb(2)|V12|fe(1)ff(2)>
if
c=g,...,d=h;0,otherwiseTheCondon-SlaterRules
thelowestunoccupiedmolecularorbital
thehighestoccupiedmolecularorbital
Theenergyrequiredtoremoveanelectronfromaclosed-shellatomormoleculesiswellapproximatedbyminustheorbitalenergyeoftheAOorMOfromwhichtheelectronisremoved.HOMOLUMOKoopman’sTheorem#HF/6-31G(d)Routesection
waterenergyTitle01MoleculeSpecificationO-0.4640.1770.0(inCartesiancoordinatesH-0.4641.1370.0H0.441-0.1430.0Slater-typeorbitals(STO)
nlm=N
rn-1exp(-
r/a0)Ylm(
,
) x
theorbital
exponent*
isusedinsteadof
inthetextbookGaussiantypefunctionsgijk=Nxiyjzkexp(-ar2)(primitiveGaussianfunction)
p=
udup
gu(contractedGaussian-typefunction,CGTF)u={ijk} p={nlm}BasisSet
i=
pcip
pBasissetofGTFs
STO-3G,3-21G,4-31G,6-31G,6-31G*,6-31G**
complexity&accuracyMinimalbasisset:oneSTOforeachatomicorbital(AO)STO-3G:3GTFsforeachatomicorbital3-21G:3GTFsforeachinnershellAO2CGTFs(w/2&1GTFs)foreachvalenceAO6-31G:6GTFsforeachinnershellAO2CGTFs(w/3&1GTFs)foreachvalenceAO6-31G*:addsasetofdorbitalstoatomsin2nd&3rdrows6-31G**:addsasetofdorbitalstoatomsin2nd&3rdrows andasetofpfunctionstohydrogenPolarizationFunctionDiffuseBasisSets:Forexcitedstatesandinanionswhereelectronicdensityismorespreadout,additionalbasisfunctionsareneeded.Diffusefunctionsto6-31Gbasissetasfollows:
6-31G*-addsasetofdiffuses&porbitalstoatomsin1st&2ndrows(Li-Cl).6-31G**-addsasetofdiffusesandporbitalstoatomsin1st&2ndrows(Li-Cl)andasetofdiffusesfunctionstoH
Diffusefunctions+polarisationfunctions:6-31+G*,6-31++G*,6-31+G**and6-31++G**basissets.Double-zeta(DZ)basisset:
twoSTOforeachAO6-31Gforacarbonatom: (10s4p)
[3s2p] 1s 2s 2pi(i=x,y,z)
6GTFs 3GTFs 1GTF 3GTFs1GTF1CGTF1CGTF1CGTF1CGTF1CGTF (s) (s) (s)(p)(p)Minimalbasisset:
OneSTOforeachinner-shellandvalence-shellAOofeachatom
example:C2H2(2S1P/1S)C:1S,2S,2Px,2Py,2PzH:1Stotal12STOsasBasissetDouble-Zeta(DZ)basisset:twoSTOsforeachandvalence-shellAOofeachatomexample:C2H2(4S2P/2S)C:two1S,two2S,two2Px,two2Py,two2PzH:two1S(STOs)total24STOsasBasissetSplit-Valence(SV)basissetTwoSTOsforeachinner-shellandvalence-shellAOOneSTOforeachinner-shellAODouble-zetapluspolarizationset(DZ+P,orDZP)AdditionalSTOw/lquantumnumberlargerthanthelmaxofthevalence-shell(2Px,2Py,2Pz)toHFive3dAostoLi-Ne,Na-ArC2H5OSiH3:(6s4p1d/4s2p1d/2s1p)SiC,OHAssignment:Calculatethestructure,groundstateenergy,molecularorbitalenergies,andvibrationalmodesandfrequenciesofawatermoleculeusingHartree-Fockmethodwith3-21Gbasisset.(due30/10)1.L-Clickon(click
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 傳統(tǒng)紡織工藝研究:手工印染技術的歷史傳承與創(chuàng)新應用
- 民警打分具體管理辦法
- 供水公司主業(yè)管理辦法
- 法蘭西國族認同研究:從“國族傳奇”看歷史演變
- 民國茶葉消費量與產量動態(tài)關系研究
- 內部濕度差異對硬化水泥漿體特性的影響研究
- 公共物品維護管理辦法
- 變頻器效率優(yōu)化-洞察及研究
- 跨界共生:“雙師型”教師企業(yè)實踐激勵機制創(chuàng)新探討
- 鞭毛狀微生物阪崎腸桿菌的乳粉檢測技術研究
- 辦公室應聘題庫及答案
- 2025年河北中考地理真題含答案
- 鐵礦尾礦清運方案(3篇)
- 國開機考答案 管理學基礎2025-06-27
- 國家開放大學《思想道德與法治》社會實踐報告范文一
- 【9語安徽中考卷】2025年安徽省中考招生考試真題語文試卷(真題+答案)
- 2025年空氣過濾器行業(yè)分析報告
- 同等學力人員申請碩士學位電子科學與技術學科綜合水平全國統(tǒng)一考試大綱(第二版)
- (高清版)DG∕TJ 08-507-2018 高強混凝土抗壓強度無損檢測技術標準
- 2024年鐵嶺市三支一扶考試真題
- 2024版機電工程施工質量標準化數字模型圖集
評論
0/150
提交評論