![2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/38a7dda3276eeba0417c33850a42c5ac/38a7dda3276eeba0417c33850a42c5ac1.gif)
![2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/38a7dda3276eeba0417c33850a42c5ac/38a7dda3276eeba0417c33850a42c5ac2.gif)
![2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/38a7dda3276eeba0417c33850a42c5ac/38a7dda3276eeba0417c33850a42c5ac3.gif)
![2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/38a7dda3276eeba0417c33850a42c5ac/38a7dda3276eeba0417c33850a42c5ac4.gif)
![2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/38a7dda3276eeba0417c33850a42c5ac/38a7dda3276eeba0417c33850a42c5ac5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省蘇州市市轄區(qū)數(shù)學九上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,點A、B、C在上,∠A=72°,則∠OBC的度數(shù)是()A.12° B.15° C.18° D.20°2.如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是()A.6 B.12 C.24 D.不能確定3.如圖,在正方形網(wǎng)格中,每個小正方形的邊長是個單位長度,以點為位似中心,在網(wǎng)格中畫,使與位似,且與的位似比為,則點的坐標可以為()A. B. C. D.4.如圖,在平面直角坐標系中,將繞著旋轉(zhuǎn)中心順時針旋轉(zhuǎn),得到,則旋轉(zhuǎn)中心的坐標為()A. B.C. D.5.下列事件中,是必然事件的是()A.擲一次骰子,向上一面的點數(shù)是6B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月C.射擊運動員射擊一次,命中靶心D.經(jīng)過有交通信號燈的路口,遇到紅燈6.平面直角坐標系內(nèi)一點P(2,-3)關(guān)于原點對稱點的坐標是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)7.下列圖形中是中心對稱圖形的有()個.A.1 B.2 C.3 D.48.若將二次函數(shù)的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得圖象對應(yīng)函數(shù)的表達式為()A. B.C. D.9.下列說法正確的是()A.所有等邊三角形都相似 B.有一個角相等的兩個等腰三角形相似C.所有直角三角形都相似 D.所有矩形都相似10.某校對部分參加夏令營的中學生的年齡(單位:歲)進行統(tǒng)計,結(jié)果如下表:則這些學生年齡的眾數(shù)和中位數(shù)分別是()年齡1314151617人數(shù)12231A.16,15 B.16,14 C.15,15 D.14,1511.下列各選項的事件中,發(fā)生的可能性大小相等的是()A.小明去某路口,碰到紅燈,黃燈和綠燈B.擲一枚圖釘,落地后釘尖“朝上”和“朝下”C.小亮在沿著Rt△ABC三邊行走他出現(xiàn)在AB,AC與BC邊上D.小紅擲一枚均勻的骰子,朝上的點數(shù)為“偶數(shù)”和“奇數(shù)”12.如圖,點在線段上,在的同側(cè)作角的直角三角形和角的直角三角形,與,分別交于點,,連接.對于下列結(jié)論:①;②;③圖中有5對相似三角形;④.其中結(jié)論正確的個數(shù)是()A.1個 B.2個 C.4個 D.3個二、填空題(每題4分,共24分)13.如圖,,請補充—個條件:___________,使(只寫一個答案即可).14.用正五邊形鋼板制作一個邊框總長為40cm的五角星(如圖),則正五邊形的邊長為cm(保留根號)__________.15.△ABC中,∠C=90°,AC=6,BC=8,則sin∠A的值為__________.16.如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O(shè)1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O(shè)2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O(shè)3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.17.已知二次函數(shù),當-1≤x≤4時,函數(shù)的最小值是__________.18.寫出一個具有性質(zhì)“在每個象限內(nèi)y隨x的增大而減小”的反比例函數(shù)的表達式為________.三、解答題(共78分)19.(8分)如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點A、點D,且點A的橫坐標為1,點D的縱坐標為-1,過點A作AB⊥x軸于點B,△AOB的面積為1.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)若一次函數(shù)y=ax+b的圖像與x軸交于點C,求∠ACO的度數(shù).(3)結(jié)合圖像直接寫出,當時,x的取值范圍.20.(8分)如圖,是⊙的直徑,弦,垂足為,連接.過上一點作交的延長線于點,連接交于點,且.(1)求證:是⊙的切線;(2)延長交的延長線于點,若,,求的長.21.(8分)如圖,在一筆直的海岸線上有A,B兩觀景臺,A在B的正東方向,BP=5(單位:km),有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(1)求A、B兩觀景臺之間的距離;(2)小船從點P處沿射線AP的方向進行沿途考察,求觀景臺B到射線AP的最短距離.(結(jié)果保留根號)22.(10分)如圖所示,陽光透過長方形玻璃投射到地面上,地面上出現(xiàn)一個明亮的平行四邊形,楊陽用量角器量出了一條對角線與一邊垂直,用直尺量出平行四邊形的一組鄰邊的長分別是30cm,50cm,請你幫助楊陽計算出該平行四邊形的面積.23.(10分)如圖,在中,,,于點,是上的點,于點,,交于點.(1)求證:;(2)當?shù)拿娣e最大時,求的長.24.(10分)如圖,點E是弧BC的中點,點A在⊙O上,AE交BC于點D.(1)求證:;(2)連接OB,OC,若⊙O的半徑為5,BC=8,求的面積.25.(12分)如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長AE交BD的延長線于點M,過點D作⊙O的切線交AB的延長線于點C.(1)若OACD,求陰影部分的面積;(2)求證:DEDM.26.實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應(yīng)的字母.(保留作圖痕跡,不寫作法)(1)作∠BAC的平分線,交BC于點O.(2)以O(shè)為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,(1)AB與⊙O的位置關(guān)系是_____.(直接寫出答案)(2)若AC=5,BC=12,求⊙O的半徑.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)圓周角定理可得∠BOC的度數(shù),根據(jù)等腰三角形的性質(zhì)即可得答案.【題目詳解】∵點A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故選:C.【題目點撥】本題考查圓周角定理及等腰三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.2、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的長,則可求得OA與OD的長,又由S△AOD=S△APO+S△DPO=OA?PE+OD?PF,代入數(shù)值即可求得結(jié)果.【題目詳解】連接OP,如圖所示:∵四邊形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA?PE+OD?PF=OA?(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴點P到矩形的兩條對角線AC和BD的距離之和是1.故選B.【題目點撥】本題考查了矩形的性質(zhì)、勾股定理、三角形面積.熟練掌握矩形的性質(zhì)和勾股定理是解題的關(guān)鍵.3、B【解題分析】利用位似性質(zhì)和網(wǎng)格特點,延長CA到A1,使CA1=2CA,延長CB到B1,使CB1=2CB,則△A1B1C1滿足條件;或延長AC到A1,使CA1=2CA,延長BC到B1,使CB1=2CB,則△A1B1C1也滿足條件,然后寫出點B1的坐標.【題目詳解】解:由圖可知,點B的坐標為(3,-2),
如圖,以點C為位似中心,在網(wǎng)格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,
則點B1的坐標為(4,0)或(-8,0),位于題目圖中網(wǎng)格點內(nèi)的是(4,0),
故選:B.【題目點撥】本題考查了位似變換及坐標與圖形的知識,解題的關(guān)鍵是根據(jù)兩圖形的位似比畫出圖形,注意有兩種情況.4、C【分析】根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等,可知旋轉(zhuǎn)中心一定在任何一對對應(yīng)點所連線段的垂直平分線上,由圖形可知,線段OC與BE的垂直平分線的交點即為所求.【題目詳解】∵繞旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后得到,∴O、B的對應(yīng)點分別是C、E,又∵線段OC的垂直平分線為y=1,線段BE是邊長為2的正方形的對角線,其垂直平分線是另一條對角線所在的直線,由圖形可知,線段OC與BE的垂直平分線的交點為(1,1).故選C.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì)及垂直平分線的判定.5、B【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,即發(fā)生的概率是1的事件.【題目詳解】解:A.擲一次骰子,向上一面的點數(shù)是6,屬于隨機事件;B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月,屬于必然事件;C.射擊運動員射擊一次,命中靶心,屬于隨機事件;D.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件;故選B.【題目點撥】此題主要考查事件發(fā)生的概率,解題的關(guān)鍵是熟知必然事件的定義.6、C【解題分析】略7、B【解題分析】∵正三角形是軸對稱能圖形;平行四邊形是中心對稱圖形;正五邊形是軸對稱圖形;正六邊形既是中心對稱圖形又是軸對稱圖形,∴中心對稱圖形的有2個.故選B.8、C【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【題目詳解】解:將的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得二次函數(shù)的表達式為:.故選:C.【題目點撥】本題考查了拋物線的平移,屬于基本知識題型,熟練掌握拋物線的平移規(guī)律是解題的關(guān)鍵.9、A【解題分析】根據(jù)等邊三角形各內(nèi)角為60°的性質(zhì)、矩形邊長的性質(zhì)、直角三角形、等腰三角形的性質(zhì)可以解題.【題目詳解】解:A、等邊三角形各內(nèi)角為60°,各邊長相等,所以所有的等邊三角形均相似,故本選項正確;
B、一對等腰三角形中,若底角和頂角相等且不等于60°,則該對三角形不相似,故本選項錯誤;
C、直角三角形中的兩個銳角的大小不確定,無法判定三角形相似,故本選項錯誤;
D、矩形的鄰邊的關(guān)系不確定,所以并不是所有矩形都相似,故本選項錯誤.
故選:A.【題目點撥】本題考查了等邊三角形各內(nèi)角為60°,各邊長相等的性質(zhì),考查了等腰三角形底角相等的性質(zhì),本題中熟練掌握等邊三角形、等腰三角形、直角三角形、矩形的性質(zhì)是解題的關(guān)鍵.10、A【分析】根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【題目詳解】解:由表可知16歲出現(xiàn)次數(shù)最多,所以眾數(shù)為16歲,因為共有1+2+2+3+1=9個數(shù)據(jù),所以中位數(shù)為第5個數(shù)據(jù),即中位數(shù)為15歲,故選:A.【題目點撥】本題考查了眾數(shù)及中位數(shù)的定義,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù).當有奇數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置的數(shù);當有偶數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置兩個數(shù)的平均數(shù).11、D【分析】根據(jù)概率公式逐一判斷即可.【題目詳解】A、∵交通信號燈有“紅、綠、黃”三種顏色,但是紅黃綠燈發(fā)生的時間一般不相同,∴它們發(fā)生的概率不相同,∴選項A不正確;B、∵圖釘上下不一樣,∴釘尖朝上的概率和釘尖著地的概率不相同,∴選項B不正確;C、∵“直角三角形”三邊的長度不相同,∴小亮在沿著Rt△ABC三邊行走他出現(xiàn)在AB,AC與BC邊上走,他出現(xiàn)在各邊上的概率不相同,∴選項C不正確;D、小紅擲一枚均勻的骰子,朝上的點數(shù)為“偶數(shù)”和“奇數(shù)”的可能性大小相等,∴選項D正確.故選:D.【題目點撥】此題考查的是概率問題,掌握根據(jù)概率公式分析概率的大小是解決此題的關(guān)鍵.12、D【分析】如圖,設(shè)AC與PB的交點為N,根據(jù)直角三角形的性質(zhì)得到,根據(jù)相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據(jù)相似三角形的性質(zhì)得到∠BEA=∠CDA,推出△PME∽△AMD,根據(jù)相似三角形的性質(zhì)得到MP?MD=MA?ME,故②正確;由相似三角形的性質(zhì)得到∠APM=∠DEM=90,根據(jù)垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對,故③不正確.【題目詳解】如圖,設(shè)AC與PB的交點為N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正確;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP?MD=MA?ME,故②正確;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴圖中相似三角形有6對,故③不正確;故選:D.【題目點撥】本題考查了相似三角形的判定和性質(zhì),直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【分析】根據(jù)相似三角形的判定方法,已知一組角相等則再添加一組相等的角或夾該角的兩個邊對應(yīng)成比例即可推出兩三角形相似.【題目詳解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴當∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.故答案為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【題目點撥】本題考查了相似三角形的判定:①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.14、【分析】根據(jù)正五邊形的概念可證得,利用對應(yīng)邊成比例列方程即可求得答案.【題目詳解】如圖,由邊框總長為40cm的五角星,知:,ABCDE為圓內(nèi)接正五邊形,∴,,∴,∴,同理:,∴,∴,設(shè),則,∵,,∴,,即:,化簡得:,配方得:,解得:2(負值已舍),故答案為:2【題目點撥】本題考查了圓內(nèi)接正五邊形的性質(zhì)、相似三角形的判定和性質(zhì)、一元二次方程的解法,判定是正確解答本題的關(guān)鍵.15、【分析】根據(jù)勾股定理及三角函數(shù)的定義直接求解即可;【題目詳解】如圖,,∴sin∠A,故答案為:【題目點撥】本題考查了三角函數(shù)的定義及勾股定理,熟練掌握三角函數(shù)的定義是解題的關(guān)鍵.16、22015π【分析】連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長,再找出圓半徑的規(guī)律即可解題.【題目詳解】解:連接P1O1,P2O2,P3O3…,∵P1是⊙O1上的點,∴P1O1=OO1,∵直線l解析式為y=x,∴∠P1OO1=45°,∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,同理,PnOn垂直于x軸,∴為圓的周長,∵以O(shè)1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O(shè)2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案為:22015π.【題目點撥】本題考查了圖形類規(guī)律探索、一次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)以及弧長的計算,本題中準確找到圓半徑的規(guī)律是解題的關(guān)鍵.17、-1【分析】根據(jù)題意和二次函數(shù)的性質(zhì)可以求得當?1≤x≤4時,函數(shù)的最小值.【題目詳解】解:∵二次函數(shù),∴該函數(shù)的對稱軸是直線x=1,當x>1時,y隨x的增大而增大,當x<1時,y隨x的增大而減小,∵?1≤x≤4,∴當x=1時,y取得最小值,此時y=-1,故答案為:-1.【題目點撥】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.18、y=(答案不唯一)【解題分析】根據(jù)反比例函數(shù)的性質(zhì),只需要當k>0即可,答案不唯一.故答案為y=(答案不唯一).三、解答題(共78分)19、(1),;(2)∠ACO=45°;(3)0<<1,<-2【分析】(1)由△AOB的面積為1,點A的橫坐標為1,求點A的縱坐標,確定反比例函數(shù)解析式,利用反比例函數(shù)解析式求D點坐標,利用“兩點法”求一次函數(shù)解析式;
(2)由一次函數(shù)解析式求C點坐標,再求AB、BC,在Rt△ABC中,求tan∠ACO的值,再求∠ACO的度數(shù);
(3)當y1>y2時,y1的圖象在y2的上面,由此求出x的取值范圍.【題目詳解】解(1)如圖:S?AOB=1,則則反比例函數(shù)的解析式:∴A(1,2),D(-2,-1)設(shè)一次函數(shù)的解析式為,則,解得:.∴一次函數(shù)的解析式為:(2)由直線y=x+1可知,C(-1,0),
則BC=OB+OC=2,AB=2,
所以,在Rt△ABC中,tan∠ACO==1,
故∠ACO=45°;
(3)由圖象可知,當y1>y2時,x<-2或0<x<1.【題目點撥】此題考查反比例函數(shù)與一次函數(shù)的交點問題.解題關(guān)鍵是由已知條件求交點坐標,根據(jù)交點坐標求反比例函數(shù)、一次函數(shù)的解析式,利用解析式,形數(shù)結(jié)合解答題目的問題.20、(1)見解析(2)【分析】(1)連接,由,推,證,得,根據(jù)切線判定定理可得;(2)連接,設(shè)⊙的半徑為,則,,在中,求得,在中,求得,由,證,得,即,可求OM.【題目詳解】(1)證明:連接,如圖,∵,∴,而,∴,∵,∴,∴,∵,∴,∴,即,∴,∴是⊙的切線;(2)解:連接,如圖,設(shè)⊙的半徑為,則,,在中,,解得,在中,,∵,∴,∴,∴,即,∴.【題目點撥】考核知識點:切線判定,相似三角形判定和性質(zhì).理解切線判定和相似三角形判定是關(guān)鍵.21、(1)A、B兩觀景臺之間的距離為=(5+5)km;(2)觀測站B到射線AP的最短距離為()km.【分析】(1)過點P作PD⊥AB于點D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP的長,然后根據(jù)BD+AD=AB,即可求解;
(2)過點B作BF⊥AC于點F,解直角三角形即可得到結(jié)論.【題目詳解】解:(1)如圖,過點P作PD⊥AB于點D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=1.∴AB=BD+AD=(5+5)km;答:A、B兩觀景臺之間的距離為=(5+5)km;(2)如圖,過點B作BF⊥AC于點F,則∠BAP=30°,∵AB=(5+5),∴BF=AB=()km.答:觀測站B到射線AP的最短距離為()km.【題目點撥】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中.通過作輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.22、1200cm2【解題分析】先利用勾股定理計算AC,然后根據(jù)平行四邊形的面積求解.【題目詳解】解如圖,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以該平行四邊形的面積=30×40=1200(cm2).【題目點撥】本題主要考查了利用勾股定理求直角三角形邊長和求平行四邊形面積,熟練掌握方法即可求解.23、(1)見解析;(2)5【分析】(1)根據(jù)相似三角形的判定方法即可求;(2)設(shè),的面積為,由等腰三角形性質(zhì)和平行線分線段成比例,可求出,再根據(jù)的面積可以得出關(guān)于的函數(shù)關(guān)系式,由二次函數(shù)性質(zhì)可得的面積為最大時的值即可.【題目詳解】解:(1)證明:,,,,.(2)解:設(shè),則,∵,,,∴,在Rt△ABG中,,∵∴,即,∴,,,即,的面積當?shù)拿娣e最大時,,即的長為.【題目點撥】本題考查相似三角形的判定和性質(zhì),三角形的面積公式,可利用數(shù)形結(jié)合思想根據(jù)題目提供的條件轉(zhuǎn)化為函數(shù)關(guān)系式.24、(1)見解析;(2)12【分析】(1)由點E是的中點根據(jù)圓周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例,證得結(jié)論.(2)過點O作OF⊥BC于點F,根據(jù)垂徑定理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 充電樁采購合同
- 企業(yè)正式聘用合同模板
- 2024年智能穿戴設(shè)備技術(shù)研發(fā)合同
- 破火器和噴灑系統(tǒng)的應(yīng)用
- 中石化成品油購銷合同
- 房屋承租轉(zhuǎn)租合同書
- 有關(guān)設(shè)備采購合同范本
- 工程擔保合同的反擔保
- 新裝修插座采購合同范本年
- 南方公司電網(wǎng)基建項目危險性較大的分部分項工程安全管理工作指引
- 公司組織架構(gòu)與管理體系制度
- 2024-2030年中國涂碳箔行業(yè)現(xiàn)狀調(diào)查與投資策略分析研究報告
- 2023-2024年度數(shù)字經(jīng)濟與驅(qū)動發(fā)展公需科目答案(第5套)
- 職業(yè)分類表格
- 廣東省深圳高級中學2023-2024學年八年級下學期期中考試物理試卷
- 電網(wǎng)建設(shè)項目施工項目部環(huán)境保護和水土保持標準化管理手冊(變電工程分冊)
- 口腔門診部設(shè)置可行性研究報告
- 體檢科運營可行性報告
- 北京市豐臺區(qū)市級名校2024屆數(shù)學高一第二學期期末檢測模擬試題含解析
- 設(shè)立項目管理公司組建方案
- 薪酬戰(zhàn)略與實踐
評論
0/150
提交評論