2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題含解析_第1頁
2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題含解析_第2頁
2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題含解析_第3頁
2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題含解析_第4頁
2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣西壯族自治區(qū)河池市鳳山縣數(shù)學九上期末達標測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.某商場舉行投資促銷活動,對于“抽到一等獎的概率為”,下列說法正確的是()A.抽一次不可能抽到一等獎B.抽次也可能沒有抽到一等獎C.抽次獎必有一次抽到一等獎D.抽了次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎2.在Rt△ABC中,∠C=90°,sinA=,BC=6,則AB=()A.4 B.6 C.8 D.103.的值等于()A. B. C. D.4.已知點都在函數(shù)的圖象上,則y1、y2、y3的大小關系是()A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y25.一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根6.在一個不透明的袋中裝有個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在左右,則袋中紅球大約有()A.個 B.個 C.個 D.個7.如圖,△ABC的內切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.98.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:29.已知sinα=,求α.若以科學計算器計算且結果以“度,分,秒”為單位,最后應該按鍵()A.AC B.2ndF C.MODE D.DMS10.如圖,AB為⊙O的弦,AB=8,OC⊥AB于點D,交⊙O于點C,且CD=1,則⊙O的半徑為()A.8.5 B.7.5 C.9.5 D.811.如圖,四邊形內接于圓,過點作于點,若,,則的長度為()A. B.6 C. D.不能確定12.下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中x與y的部分對應值如下表x-1013y-1353那么當x=4時,y的值為___________.14.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.15.如圖,已知AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB=.16.張華在網(wǎng)上經(jīng)營一家禮品店,春節(jié)期間準備推出四套禮品進行促銷,其中禮品甲45元/套,禮品乙50元/套,禮品丙70元/套,禮品丁80元/套,如果顧客一次購買禮品的總價達到100元,顧客就少付x元,每筆訂單顧客網(wǎng)上支付成功后,張華會得到支付款的80%.①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付_________元;②在促銷活動中,為保證張華每筆訂單得到的金額均不低于促銷前總價的六折,則x的最大值為________.17.若方程有兩個相等的實數(shù)根,則m=________.18.某廠一月份的總產(chǎn)量為500噸,通過技術更新,產(chǎn)量逐月提高,三月份的總產(chǎn)量達到720噸.若平均每月增長率是,則可列方程為__.三、解答題(共78分)19.(8分)在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.(1)如圖1,若DF⊥AC,垂足為F,證明:DE=DF(2)如圖2,將∠EDF繞點D順時針旋轉一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由.(3)如圖3,將∠EDF繼續(xù)繞點D順時針旋轉一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎?說明理由.20.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.(1)求點B的坐標及直線AB的解析式;(2)判斷四邊形CBED的形狀,并說明理由.21.(8分)如圖,直線y=x+3分別交x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內的一個交點,PB⊥x軸于B,且S△ABP=16.(1)求證:△AOC∽△ABP;(2)求點P的坐標;(3)設點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側,作QD⊥x軸于D,當△BQD與△AOC相似時,求點Q的橫坐標.22.(10分)用適當?shù)姆椒ń庀路匠蹋?3.(10分)如圖,已知l1∥l2,Rt△ABC的兩個頂點A,B分別在直線l1,l2上,,若l2平分∠ABC,交AC于點D,∠1=26°,求∠2的度數(shù).24.(10分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.(1)求雙曲線解析式;(2)點P在x軸上,如果△ACP的面積為5,求點P的坐標.25.(12分)解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=026.如圖,已知在矩形ABCD中,AB=6,BC=8,點P從點C出發(fā)以每秒1個單位長度的速度沿著CD在C點到D點間運動(當達D點后則停止運動),同時點Q從點D出發(fā)以每秒2個單位長度的速度沿著DA在D點到A點間運動(當達到A點后則停止運動).設運動時間為t秒,則按下列要求解決有關的時間t.(1)△PQD的面積為5時,求出相應的時間t;(2)△PQD與△ABC可否相似,如能相似求出相應的時間t,如不能說明理由;(3)△PQD的面積可否為10,說明理由.

參考答案一、選擇題(每題4分,共48分)1、B【解題分析】根據(jù)大量反復試驗時,某事件發(fā)生的頻率會穩(wěn)定在某個常數(shù)的附近,這個常數(shù)就叫做事件概率的估計值,而不是一種必然的結果,可得答案.【題目詳解】A.“抽到一等獎的概率為”,抽一次也可能抽到一等獎,故錯誤;B.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故正確;C.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故錯誤;D.“抽到一等獎的概率為”,抽第10次的結果跟前面的結果沒有關系,再抽一次也不一定抽到一等獎,故錯誤;故選B.【題目點撥】關鍵是理解概率是反映事件的可能性大小的量.概率小的有可能發(fā)生,概率大的有可能不發(fā)生.概率等于所求情況數(shù)與總情況數(shù)之比.2、D【題目詳解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故選D.考點:解直角三角形;3、B【解題分析】根據(jù)特殊角的三角函數(shù)值求解.【題目詳解】.

故選:B.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關鍵是熟記幾個特殊角的三角函數(shù)值.4、A【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征,將點分別代入函數(shù),求得的,然后比較它們的大?。绢}目詳解】解:把分別代入:∵>>,∴>>故選:A.【題目點撥】本題考查的是反比例函數(shù)的性質,考查根據(jù)自變量的值判斷函數(shù)值的大小,掌握判斷方法是解題的關鍵.5、B【分析】把一元二次方程轉換成一般式:(),再根據(jù)求根公式:,將相應的數(shù)字代入計算即可.【題目詳解】解:由題得:∴一元二次方程有兩個相等的實數(shù)根故選:B.【題目點撥】本題主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解題的關鍵.6、A【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設出未知數(shù)列出方程求解.【題目詳解】設袋中有紅球x個,由題意得解得x=10,故選:A.【題目點撥】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.7、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設⊙O的半徑為r,利用面積法求出r的值即可求得答案.【題目詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.【題目點撥】本題考查了三角形的內切圓,勾股定理的逆定理,正方形判定與性質,面積法等,正確把握相關知識是解題的關鍵.8、B【題目詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B9、D【分析】根據(jù)利用科學計算器由三角函數(shù)值求角度的使用方法,容易進行選擇.【題目詳解】若以科學計算器計算且結果以“度,分,秒”為單位,最后應該按DMS,故選:D.【題目點撥】本題考查科學計算器的使用方法,屬基礎題.10、A【解題分析】根據(jù)垂徑定理得到直角三角形,求出的長,連接,得到直角三角形,然后在直角三角形中計算出半徑的長.【題目詳解】解:如圖所示:連接,則長為半徑.∵于點,∴,∵在中,,∴,∴,故答案為A.【題目點撥】本題主要考查垂徑定理和勾股定理.根據(jù)垂徑定理“垂直于弦的直徑平分弦,并且平分弦所對的弧”得到一直角邊,利用勾股定理列出關于半徑的等量關系是解題關鍵.11、B【分析】首先根據(jù)圓內接四邊形的性質求得∠A的度數(shù),然后根據(jù)解直角三角形的方法即可求解.【題目詳解】∵四邊形ABCD內接于⊙O,,∴∠A=180?120=60,∵BH⊥AD,,∴BH=AHtan60°=,故選:B.【題目點撥】本題考查了圓內接四邊形及勾股定理的知識,解題的關鍵是熟知解直角三角形的方法.12、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、既是軸對稱圖形,又是中心對稱圖形,故此選項正確.故選D.【題目點撥】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每題4分,共24分)13、-1【分析】將表中數(shù)值選其中三組代入解析式得方程組,解方程組得到函數(shù)解析式,再把x=4代入求值即可.【題目詳解】解:將表中數(shù)值選其中三組代入解析式得:解得:所以解析式為:當x=4時,故答案為:-1【題目點撥】本題考查了待定系數(shù)法求二次函數(shù)的解析式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關鍵.14、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關系:S扇形,把對應的數(shù)值代入即可求得半徑r的長.【題目詳解】解:∵S扇形,∴,∴.故答案為1.【題目點撥】本題考查了扇形面積和弧長公式之間的關系,解此類題目的關鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關系:S扇形.15、4【解題分析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=416、125【分析】①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付45+80-5=1元.②設顧客每筆訂單的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,對M≥100恒成立,由此能求出x的最大值.【題目詳解】解:(1)當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付:45+80-5=1元.故答案為:1.(2)設顧客一次購買干果的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M≥100恒成立,∴0.8x≤200解得:x≤25.故答案為25.【題目點撥】本題考查代數(shù)值的求法,考查函數(shù)性質在生產(chǎn)、生活中的實際應用等基礎知識,考查運算求解能力和應用意識,是中檔題.17、4【解題分析】∵方程x2?4x+m=0有兩個相等的實數(shù)根,∴△=b2?4ac=16?4m=0,解之得,m=4故本題答案為:418、【分析】根據(jù)增長率的定義列方程即可,二月份的產(chǎn)量為:,三月份的產(chǎn)量為:.【題目詳解】二月份的產(chǎn)量為:,三月份的產(chǎn)量為:.【題目點撥】本題考查了一元二次方程的增長率問題,解題關鍵是熟練理解增長率的表示方法,一般用增長后的量=增長前的量×(1+增長率).三、解答題(共78分)19、(1)見解析;(2)結論仍然成立.,DE=DF,見解析;(3)仍然成立,DE=DF,見解析【分析】(1)由題意根據(jù)全等三角形的性質與判定,結合等邊三角形性質證明△BED≌△CFD(ASA),即可證得DE=DF;(2)根據(jù)題意先取AC中點G,連接DG,繼而再全等三角形的性質與判定,結合等邊三角形性質證明△EDG≌△FDC(ASA),進而證得DE=DF;(3)由題意過點D作DN⊥AC于N,DM⊥AB于M,繼而再全等三角形的性質與判定,結合等邊三角形性質證明△DME≌△DNF(ASA),即可證得DE=DF.【題目詳解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等邊三角形,即∠B=∠C=60°,∵D是BC的中點,∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中點G,連接DG,如下圖,∵D為BC的中點,∴DG=AC=BD=CD,∴△BDG是等邊三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴結論仍然成立.(3)如下圖,過點D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【題目點撥】本題是幾何變換綜合題,主要考查全等三角形的判斷和性質以及等邊三角形的性質,根據(jù)題意構造出全等三角形是解本題的關鍵.20、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解題分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數(shù)法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【題目詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形21、(1)證明見解析;(2)點P的坐標為(2,4);(3)點Q的橫坐標為:或.【分析】(1)利用PB∥OC,即可證明三角形相似;(2)由一次函數(shù)解析式,先求點A、C的坐標,由△AOC∽△ABP,利用線段比求出BP,AB的值,從而可求出點P的坐標即可;(3)把P坐標代入求出反比例函數(shù),設Q點坐標為(n,),根據(jù)△BQD與△AOC相似分兩種情況,利用線段比聯(lián)立方程組求出n的值,即可確定出Q坐標.【題目詳解】(1)證明:∵PB⊥x軸,OC⊥x軸,∴OC∥PB,∴△AOC∽△ABP;(2)解:對于直線y=x+3,令x=0,得y=3;令y=0,得x=-6;∴A(-6,0),C(0,4),∴OA=6,OC=3.∵△AOC∽△ABP,∴,∵S△ABP=16,S△AOC=,∴,∴,即,∴PB=4,AB=8,∴OB=2,∴點P的坐標為:(2,4).(3)設反比例函數(shù)的解析式為:y=,把P(2,4)代入,得k=xy=2×4=8,∴y=.點Q在雙曲線上,可設點Q的坐標為:(n,)(n>2),則BD=,QD=,①當△BQD∽△ACO時,,即,整理得:,解得:或;②當△BQD∽△CAO時,,即,整理得:,解得:,(舍去),綜上①②所述,點Q的橫坐標為:1+或1+.【題目點撥】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,一次函數(shù)與反比例函數(shù)的交點,以及坐標與圖形性質,熟練掌握待定系數(shù)法是解本題的關鍵.22、x=3或1【分析】移項,因式分解得到,再求解.【題目詳解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【題目點撥】本題考查了一元二次方程,解題的關鍵是根據(jù)方程的形式選擇因式分解法.23、38°【解題分析】試題分析:根據(jù)平行線的性質先求得∠ABD=26°,再根據(jù)角平分線的定義求得∠ABC=52°,再根據(jù)直角三角形兩銳角互余即可得.試題解析:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.24、(1);(2)(,0)或【分析】(1)把A點坐標代入直線解析式可求得n的值,則可求得A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論