2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省龍巖市新羅區(qū)數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知點(x1,y1),(x2,y2)是反比例函數(shù)y=圖象上的兩點,且0<x1<x2,則y1,y2的大小關(guān)系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<02.下列一元二次方程中,兩個實數(shù)根之和為2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=03.已知反比例函數(shù)y=的圖象經(jīng)過點(2,3),那么下列四個點中,也在這個函數(shù)圖象上的是()A.(﹣6,1) B.(1,6) C.(2,﹣3) D.(3,﹣2)4.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形5.下列一元二次方程中,兩實數(shù)根之和為3的是()A. B. C. D.6.計算()A. B. C. D.7.拋物線y=(x+2)2﹣3可以由拋物線y=x2平移得到,則下列平移過程正確的是()A.先向左平移2個單位,再向上平移3個單位 B.先向左平移2個單位,再向下平移3個單位C.先向右平移2個單位,再向下平移3個單位 D.先向右平移2個單位,再向上平移3個單位8.按下面的程序計算:若開始輸入的值為正整數(shù),最后輸出的結(jié)果為,則開始輸入的值可以為()A. B. C. D.9.若點A(-3,m),B(3,m),C(-1,m+n2+1)在同一個函數(shù)圖象上,這個函數(shù)可能是()A.y=x+2 B. C.y=x2+2 D.y=-x2-210.如圖,在Rt△ABC中,∠ACB=90°,AC=,以點B為圓心,BC的長為半徑作弧,交AB于點D,若點D為AB的中點,則陰影部分的面積是()A. B. C. D.11.將化成的形式為()A. B.C. D.12.平面直角坐標系中,拋物線經(jīng)變換后得到拋物線,則這個變換可以是()A.向左平移2個單位 B.向右平移2個單位C.向左平移4個單位 D.向右平移4個單位二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠BAC=50°,AC=2,AB=3,將△ABC繞點A逆時針旋轉(zhuǎn)50°,得到△AB1C1,則陰影部分的面積為_______.14.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為_____.15.如圖,在矩形ABCD中,AB=2,AD=,以點C為圓心,以BC的長為半徑畫弧交AD于E,則圖中陰影部分的面積為__________.16.如圖,矩形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;第三步:如圖③,將MN左側(cè)紙片繞G點按順時針旋轉(zhuǎn)180o,使線段GB與GE重合,將MN右側(cè)紙片繞H點按逆時針方向旋轉(zhuǎn)180o,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片(裁剪和拼圖過程均無縫且不重疊)則拼成的這個四邊形紙片的周長的最大值為___cm.17.如圖,直線AB與CD相交于點O,OA=4cm,∠AOC=30°,且點A也在半徑為1cm的⊙P上,點P在直線AB上,⊙P以1cm/s的速度從點A出發(fā)向點B的方向運動_________s時與直線CD相切.18.如圖,在直角坐標系中,點,點,過點的直線垂直于線段,點是直線上在第一象限內(nèi)的一動點,過點作軸,垂足為,把沿翻折,使點落在點處,若以,,為頂點的三角形與△ABP相似,則滿足此條件的點的坐標為__________.三、解答題(共78分)19.(8分)已知:二次函數(shù)y=x2﹣6x+5,利用配方法將表達式化成y=a(x﹣h)2+k的形式,再寫出該函數(shù)的對稱軸和頂點坐標.20.(8分)感知定義在一次數(shù)學活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.①證明△ABD是“類直角三角形”;②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.類比拓展(2)如圖2,△ABD內(nèi)接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結(jié)AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.21.(8分)如圖,頂點為M的拋物線y=ax2+bx+3與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C(1)求拋物線的表達式;(2)在直線AC的上方的拋物線上,有一點P(不與點M重合),使△ACP的面積等于△ACM的面積,請求出點P的坐標;(3)在y軸上是否存在一點Q,使得△QAM為直角三角形?若存在,請直接寫出點Q的坐標:若不存在,請說明理由.22.(10分)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?23.(10分)如圖,在平面直角坐標系中,直線與雙曲線相交于A(﹣2,a)、B兩點,BC⊥x軸,垂足為C.(1)求雙曲線與直線AC的解析式;(2)求△ABC的面積.24.(10分)如圖,在平面直角坐標系中,的頂點坐標分別為A(2,6),B(0,4),C(3,3).(正方形網(wǎng)格的每個小正方形的邊長都是1個單位長度)(1)平移后,點A的對應(yīng)點A1的坐標為(6,6),畫出平移后的;(2)畫出繞點C1旋轉(zhuǎn)180°得到的;(3)繞點P(_______)旋轉(zhuǎn)180°可以得到,請連接AP、A2P,并求AP在旋轉(zhuǎn)過程中所掃過的面積.25.(12分)如圖,在邊長為1的正方形組成的網(wǎng)格中,的頂點均在格點上,點,的坐標分別是,,繞點逆時針旋轉(zhuǎn)后得到.(1)畫出,直接寫出點,的坐標;(2)求在旋轉(zhuǎn)過程中,點經(jīng)過的路徑的長;(3)求在旋轉(zhuǎn)過程中,線段所掃過的面積.26.如圖,BD、CE是的高.(1)求證:;(2)若BD=8,AD=6,DE=5,求BC的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)反比例函數(shù)的系數(shù)為5>0,在每一個象限內(nèi),y隨x的增大而減小的性質(zhì)進行判斷即可.【題目詳解】∵5>0,∴圖形位于一、三象限,在每一個象限內(nèi),y隨x的增大而減小,又∵0<x1<x2,∴0<y2<y1,故選:B.【題目點撥】本題主要考查反比例函數(shù)圖象上點的坐標特征.注意:反比例函數(shù)的增減性只指在同一象限內(nèi).2、D【分析】利用根與系數(shù)的關(guān)系進行判斷即可.【題目詳解】方程1x1+x﹣1=0的兩個實數(shù)根之和為;方程x1+1x﹣1=0的兩個實數(shù)根之和為﹣1;方程1x1﹣x﹣1=0的兩個實數(shù)根之和為;方程x1﹣1x﹣1=0的兩個實數(shù)根之和為1.故選D.【題目點撥】本題考查了根與系數(shù)的關(guān)系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1,x1x1.3、B【解題分析】試題分析:∵反比例函數(shù)y=的圖象經(jīng)過點(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此點不在反比例函數(shù)圖象上;B、∵1×6=6,∴此點在反比例函數(shù)圖象上;C、∵2×(﹣3)=﹣6≠6,∴此點不在反比例函數(shù)圖象上;D、∵3×(﹣2)=﹣6≠6,∴此點不在反比例函數(shù)圖象上.故選B.考點:反比例函數(shù)圖象上點的坐標特征.4、B【分析】如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【題目詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【題目點撥】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.5、D【分析】根據(jù)根與系數(shù)的關(guān)系,要使一元二次方程中,兩實數(shù)根之和為3,必有△≥0且,分別計算即可判斷.【題目詳解】解:A、∵a=1,b=3,c=-3,∴,;B、∵a=2,b=-3,c=-3,∴,;C、∵a=1,b=-3,c=3,∴,原方程無解;D、∵a=1,b=-3,c=-3,∴,.故選:D.【題目點撥】本題考查根與系數(shù)關(guān)系,根的判別式.在本題中一定要注意需先用根的判別式判定根的情況,若方程有根方可用根與系數(shù)關(guān)系.6、B【分析】根據(jù)同底數(shù)冪乘法公式進行計算即可.【題目詳解】.故選:B.【題目點撥】本題考查同底數(shù)冪乘法,熟記公式即可,屬于基礎(chǔ)題型.7、B【解題分析】根據(jù)“左加右減,上加下減”的原則進行解答即可:∵y=x2,∴平移過程為:先向左平移2個單位,再向下平移3個單位.故選B.8、B【分析】由3x+1=22,解得x=7,即開始輸入的x為111,最后輸出的結(jié)果為556;當開始輸入的x值滿足3x+1=7,最后輸出的結(jié)果也為22,可解得x=2即可完成解答.【題目詳解】解:當輸入一個正整數(shù),一次輸出22時,3x+1=22,解得:x=7;當輸入一個正整數(shù)7,當兩次后輸出22時,3x+1=7,解得:x=2;故答案為B.【題目點撥】本題考查了一元一次方程的應(yīng)用,根據(jù)程序框圖列出方程和理解循環(huán)結(jié)構(gòu)是解答本題的關(guān)鍵.9、D【分析】先根據(jù)點A、B的坐標可知函數(shù)圖象關(guān)于y軸對稱,排除A、B選項;再根據(jù)點C的縱坐標大于點A的縱坐標,結(jié)合C、D選項,根據(jù)y隨x的增減變化即可判斷.【題目詳解】函數(shù)圖象關(guān)于y軸對稱,因此A、B選項錯誤又再看C選項,的圖象性質(zhì):當時,y隨x的增大而減小,因此錯誤D選項,的圖象性質(zhì):當時,y隨x的增大而增大,正確故選:D.【題目點撥】本題考查了二次函數(shù)圖象的性質(zhì),掌握圖象的性質(zhì)是解題關(guān)鍵.10、A【題目詳解】解:∵D為AB的中點,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC?tan30°==2,∴S陰影=S△ABC﹣S扇形CBD==.故選A.【題目點撥】本題考查解直角三角形和扇形面積的計算,掌握公式正確計算是本題的解題關(guān)鍵.11、C【分析】本小題先將二次項的系數(shù)提出后再將括號里運用配方法配成完全平方式即可.【題目詳解】由得:故選C【題目點撥】本題考查的知識點是配方法,掌握配方的方法及防止漏乘是關(guān)鍵.12、B【分析】根據(jù)變換前后的兩拋物線的頂點坐標找變換規(guī)律.【題目詳解】解:,頂點坐標是(-1,-4).

,頂點坐標是(1,-4).

所以將拋物線向右平移2個單位長度得到拋物線,

故選:B.【題目點撥】此題主要考查了次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律和變化特點.二、填空題(每題4分,共24分)13、π【解題分析】試題分析:∵,∴S陰影===.故答案為.考點:旋轉(zhuǎn)的性質(zhì);扇形面積的計算.14、【解題分析】根據(jù)圓周角定理的推論及切線長定理,即可得出答案解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP為切線,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴△PAB的周長為3.點睛:本題主要考查圓周角定理及切線長定理.熟記圓的相關(guān)性質(zhì)是解題的關(guān)鍵.15、【分析】連接CE,根據(jù)矩形和圓的性質(zhì)、勾股定理可得,從而可得△CED是等腰直角三角形,可得,即可根據(jù)陰影部分的面積等于扇形面積加三角形的面積求解即可.【題目詳解】連接CE∵四邊形ABCD是矩形,AB=2,AD=,∴∵以點C為圓心,以BC的長為半徑畫弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴陰影部分的面積故答案為:.【題目點撥】本題考查了陰影部分面積的問題,掌握矩形和圓的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、扇形的面積公式、三角形面積公式是解題的關(guān)鍵.16、【分析】首先確定剪拼之后的四邊形是個平行四邊形,其周長大小取決于MN的大小.然后在矩形中探究MN的不同位置關(guān)系,得到其長度的最大值與最大值,從而問題解決.【題目詳解】解:畫出第三步剪拼之后的四邊形M1N1N2M2的示意圖,如答圖1所示.圖中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位線定理),又∵M1M2∥N1N2,∴四邊形M1N1N2M2是一個平行四邊形,其周長為2N1N2+2M1N1=2BC+2MN.∵BC=6為定值,∴四邊形的周長取決于MN的大?。绱饒D2所示,是剪拼之前的完整示意圖,過G、H點作BC邊的平行線,分別交AB、CD于P點、Q點,則四邊形PBCQ是一個矩形,這個矩形是矩形ABCD的一半,∵M是線段PQ上的任意一點,N是線段BC上的任意一點,根據(jù)垂線段最短,得到MN的最小值為PQ與BC平行線之間的距離,即MN最小值為4;而MN的最大值等于矩形對角線的長度,即,四邊形M1N1N2M2的周長=2BC+2MN=12+2MN,∴最大值為12+2×=12+.故答案為:12+.【題目點撥】此題通過圖形的剪拼,考查了動手操作能力和空間想象能力,確定剪拼之后的圖形,并且探究MN的不同位置關(guān)系得出四邊形周長的最值是解題關(guān)鍵.17、1或5【分析】分類討論:當點P在射線OA上時,過點P作PE⊥AB于點E,根據(jù)切線的性質(zhì)得到PE=1cm,利用30度角所對的直角邊等于斜邊一半的性質(zhì)的OP=2PE=2cm,求出⊙P移動的距離為4-2-1=1cm,由此得到⊙P運動時間;當點P在射線OB上時,過點P作PF⊥AB于點F,同樣方法求出運動時間.【題目詳解】當點P在射線OA上時,如圖,過點P作PE⊥AB于點E,則PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移動的距離為4-2-1=1cm,∴運動時間為s;當點P在射線OB上時,如圖,過點P作PF⊥AB于點F,則PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移動的距離為4+2-1=5cm,∴運動時間為s;故答案為:1或5.【題目點撥】此題考查動圓問題,圓的切線的性質(zhì)定理,含30度角的直角邊等于斜邊一半的性質(zhì),解題中注意運用分類討論的思想解答問題.18、或【分析】求出直線l的解析式,證出△AOB∽△PCA,得出,設(shè)AC=m(m>0),則PC=2m,根據(jù)△PCA≌△PDA,得出,當△PAD∽△PBA時,根據(jù),,得出m=2,從而求出P點的坐標為(4,4)、(0,-4),若△PAD∽△BPA,得出,求出,從而得出,求出,即可得出P點的坐標為.【題目詳解】∵點A(2,0),點B(0,1),∴直線AB的解析式為y=-x+1∵直線l過點A(4,0),且l⊥AB,∴直線l的解析式為;y=2x-4,∠BAO+∠PAC=90°,∵PC⊥x軸,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴,∴,設(shè)AC=m(m>0),則PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴,如圖1:當△PAD∽△PBA時,則,則,∵AB=,∴AP=2,∴,∴m=±2,(負失去)∴m=2,當m=2時,PC=4,OC=4,P點的坐標為(4,4),如圖2,若△PAD∽△BPA,則,∴,則,∴m=±,(負舍去)∴m=,當m=時,PC=1,OC=,∴P點的坐標為(,1),故答案為:P(4,4),P(,1).【題目點撥】此題考查了一次函數(shù)的綜合,用到的知識點是相似三角形和全等三角形的判定與性質(zhì)、勾股定理、一次函數(shù)等,關(guān)鍵是根據(jù)題意畫出圖形,注意點P在第一象限有兩個點.三、解答題(共78分)19、y=(x﹣3)2-4;對稱軸為:x=3;頂點坐標為:(3,-4)【分析】首先把x2-6x+5化為(x-3)2-4,然后根據(jù)把二次函數(shù)的表達式y(tǒng)=x2-6x+5化為y=a(x-h)2+k的形式,利用拋物線解析式直接寫出答案.【題目詳解】y=x2-6x+9-9+5=(x-3)2-4,即y=(x-3)2-4;拋物線解析式為y=(x-3)2-4,

所以拋物線的對稱軸為:x=3,頂點坐標為(3,-4).【題目點撥】此題考查二次函數(shù)的三種形式,解題關(guān)鍵在于熟練掌握三種形式之間相互轉(zhuǎn)化的方法.20、(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.②如圖1中,假設(shè)在AC邊設(shè)上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構(gòu)建方程即可解決問題.(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質(zhì)構(gòu)建方程即可解決問題.【題目詳解】(1)①證明:如圖1中,∵BD是∠ABC的角平分線,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD為“類直角三角形”;②如圖1中,假設(shè)在AC邊設(shè)上存在點E(異于點D),使得△ABE是“類直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直徑,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB,則點F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F(xiàn)共線,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍棄),綜上所述,當△ABC是“類直角三角形”時,AC的長為或.【題目點撥】本題主要考查圓綜合題,考查了相似三角形的判定和性質(zhì),“類直角三角形”的定義等知識,解題的關(guān)鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數(shù)構(gòu)建方程解決問題.21、(1)y=﹣x2+2x+3;(2)點P的坐標為:(2,3);(3)存在,點Q的坐標為:(0,1)或(0,3)或(0,)或(0,﹣)【分析】(1)拋物線的表達式為:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)過點M作直線m∥AC,在AC下方作等距離的直線n,直線n與拋物線交點即為點P,即可求解;(3)分AM時斜邊、AQ是斜邊、MQ是斜邊三種情況,分別求解即可.【題目詳解】解:(1)拋物線的表達式為:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故拋物線的表達式為:y=﹣x2+2x+3;(2)過點M作直線m∥AC,直線m與拋物線交點即為點P,設(shè)直線m的表達式為:y=﹣x+b,點M(1,4),則直線m的表達式為:y=﹣x+5,聯(lián)立方程組,解得:x=1(舍去)或2;故點P的坐標為:(2,3);(3)設(shè)點Q的坐標為:(0,m),而點A、M的坐標分別為:(3,0)、(1,4);則AM2=20,AQ2=9+m2,MQ2=(m﹣4)2+1=m2﹣8m+17;當AM時斜邊時,則20=9+m2+m2﹣8m+17,解得:m=1或3;當AQ是斜邊時,則9+m2=20+m2﹣8m+17,解得m=;當MQ是斜邊時,則m2﹣8m+17=20+9+m2,解得m=﹣,綜上,點Q的坐標為:(0,1)或(0,3)或(0,)或(0,﹣)【題目點撥】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)的性質(zhì)、勾股定理的運用等,其中(3),要注意分類求解,避免遺漏.22、1米/秒【解題分析】分析:過點C作CD⊥AB于點D,設(shè)AD=x米,小明的行走速度是a米/秒,根據(jù)直角三角形的性質(zhì)用x表示出AC與BC的長,再根據(jù)小明與小軍同時到達山頂C處即可得出結(jié)論.本題解析:解:過點C作CD⊥AB于點D.設(shè)AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小軍的行走速度為米/秒,若小明與小軍同時到達山頂C處,∴=,解得a=1.答:小明的行走速度是1米/秒.23、(1);(2)4.【分析】(1)將點A(﹣2,a)代入直線y=-x得A坐標,再將點A代入雙曲線即可得到k值,由AB關(guān)于原點對稱得到B點坐標,由BC⊥x軸,垂足為C,確定出點C坐標,將A、C代入一次函數(shù)解析式即可求解;(2)由三角形面積公式即可求解.【題目詳解】將點A(﹣2,a)代入直線y=-x得a=-2,所以A(-2,2),將A(-2,2)代入雙曲線,得k=-4,∴,∵,,,,解得,∴;(2)【題目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論