2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題含解析_第1頁
2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題含解析_第2頁
2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題含解析_第3頁
2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題含解析_第4頁
2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省蕪湖繁昌縣聯(lián)考數(shù)學九上期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,以點為位似中心,將放大得到.若,則與的位似比為().A. B. C. D.2.二次函數(shù)圖象上部分點的坐標對應值列表如下:則該函數(shù)圖象的對稱軸是()……-3-2-101…………-17-17-15-11-5……A. B. C. D.3.如圖,空地上(空地足夠大)有一段長為的舊墻,小敏利用舊墻和木欄圍成一個矩形菜園,已知木欄總長,矩形菜園的面積為.若設,則可列方程()A. B.C. D.4.如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20

m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5

m,兩個路燈的高度都是9

m,則兩路燈之間的距離是()

A.24

m B.25

m C.28

m D.30

m5.小紅拋擲一枚質地均勻的骰子,骰子六個面分別刻有1到6的點數(shù),下列事件為必然事件的是()A.骰子向上一面的點數(shù)為偶數(shù) B.骰子向上一面的點數(shù)為3C.骰子向上一面的點數(shù)小于7 D.骰子向上一面的點數(shù)為66.如圖,△ABC中,D是AB的中點,DE∥BC,連接BE.若AE=6,DE=5,∠BEC=90°,則△BCE的周長是()A.12 B.24 C.36 D.487.在平面直角坐標系中,以原點為位似中心,位似比為:,將縮小,若點坐標,,則點對應點坐標為()A., B. C.或, D.,或,8.已知點A(m2﹣5,2m+3)在第三象限角平分線上,則m=()A.4 B.﹣2 C.4或﹣2 D.﹣19.如圖,等邊的邊長為是邊上的中線,點是邊上的中點.如果點是上的動點,那么的最小值為()A. B. C. D.10.若+10x+m=0是關于x的一元二次方程,則m的值應為()A.m="2" B.m= C.m= D.無法確定11.如圖,AB是⊙O的直徑,CD是⊙O的弦,若∠BAD=48°,則∠DCA的大小為()A. B. C. D.12.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,菱形ABCD的邊AD與x軸平行,A、B兩點的橫坐標分別為1和3,反比例函數(shù)y=的圖象經(jīng)過A、B兩點,則菱形ABCD的面積是_____;14.如圖,圓形紙片⊙O半徑為5,先在其內剪出一個最大正方形,再在剩余部分剪出4個最大的小正方形,則4個小正方形的面積和為_______.15.半徑為10cm的半圓圍成一個圓錐,則這個圓錐的高是__cm.16.已知:如圖,在菱形ABCD中,F(xiàn)為邊AB的中點,DF與對角線AC交于點G,過G作GE⊥AD于點E,若AB=2,且∠1=∠2,則下列結論中一定成立的是_____(把所有正確結論的序號都填在橫線上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFGC=﹣1.17.如圖,中,邊上的高長為.作的中位線,交于點;作的中位線,交于點;……順次這樣做下去,得到點,則________.

18.如圖,在平面直角坐標系中,已知?OABC的頂點坐標分別是O(0,0),A(3,0),B(4,2),C(1,2),以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF,則點E的坐標是_____.三、解答題(共78分)19.(8分)如圖,已知拋物線與軸交于、兩點,,交軸于點,對稱軸是直線.(1)求拋物線的解析式及點的坐標;(2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過作軸的垂線交拋物線于點,交線段于點.設運動時間為()秒.若與相似,請求出的值.20.(8分)關于的一元二次方程的兩個實數(shù)根分別為,.(1)求的取值范圍;(2)若,求的值.21.(8分)如圖,直線AB和拋物線的交點是A(0,﹣3),B(5,9),已知拋物線的頂點D的橫坐標是1.(1)求拋物線的解析式及頂點坐標;(1)在x軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不在,請說明理由;(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.22.(10分)如圖,要在長、寬分別為40米、24米的矩形賞魚池內建一個正方形的親水平臺.為了方便行人觀賞,分別從東、南、西、北四個方向修四條等寬的小路與平臺相連,若小路的寬是正方形平臺邊長的,小路與親水平臺的面積之和占矩形賞魚池面積的,求小路的寬.23.(10分)解方程:2x2+3x﹣1=1.24.(10分)已知二次函數(shù)y=x2+bx+c的函數(shù)值y與自變量x之間的對應數(shù)據(jù)如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)當x取何值時,該二次函數(shù)有最小值,最小值是多少?25.(12分)已知:點D是△ABC中AC的中點,AE∥BC,ED交AB于點G,交BC的延長線于點F.(1)求證:△GAE∽△GBF;(2)求證:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的長.26.如圖,已知平行四邊形中,,,.平行四邊形的頂點在線段上(點在的左邊),頂點分別在線段和上.(1)求證:;(2)如圖1,將沿直線折疊得到,當恰好經(jīng)過點時,求證:四邊形是菱形;(3)如圖2,若四邊形是矩形,且,求的長.(結果中的分母可保留根式)

參考答案一、選擇題(每題4分,共48分)1、A【解題分析】以點為個位中心,將放大得到,,可得,因此與的位似比為,故選A.2、B【分析】當和時,函數(shù)值相等,所以對稱軸為【題目詳解】解:根據(jù)題意得,當和時,函數(shù)值相等,所以二次函數(shù)圖象的對稱軸為直線故選B【題目點撥】本題考查了二次函數(shù)的性質.3、B【分析】設,則,根據(jù)矩形面積公式列出方程.【題目詳解】解:設,則,由題意,得.故選.【題目點撥】考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.4、D【解題分析】由題意可得:EP∥BD,所以△AEP∽△ADB,所以,因為EP=1.5,BD=9,所以,解得:AP=5,因為AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故選D.點睛:本題主要考查相似三角形的對應邊成比例在解決實際問題中的應用,應用相似三角形可以間接地計算一些不易直接測量的物體的高度和寬度,解題時關鍵是找出相似三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.5、C【分析】必然事件就是一定發(fā)生的事件,依據(jù)定義即可判斷.【題目詳解】A、骰子向上一面的點數(shù)為偶數(shù)是隨機事件,選項錯誤;B、骰子向上一面的點數(shù)為3是隨機事件,選項錯誤;C、骰子向上一面的點數(shù)小于7是必然事件,選項正確;D、骰子向上一面的點數(shù)為6是隨機事件,選項錯誤.故選:C.【題目點撥】本題考查了隨機事件與必然事件,熟練掌握必然事件的定義是解題的關鍵.6、B【解題分析】試題解析:△ABC中,D是AB的中點,DE∥BC,是的中點,∠BEC=90°,△BCE的周長故選B.點睛:三角形的中位線平行于第三邊而且等于第三邊的一半.7、C【分析】若位似比是k,則原圖形上的點,經(jīng)過位似變化得到的對應點的坐標是或.【題目詳解】∵以原點O為位似中心,位似比為1:2,將縮小,∴點對應點的坐標為:或.

故選:C.【題目點撥】本題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應點的坐標比等于.8、B【分析】根據(jù)第三象限角平分線上的點的特征是橫縱坐標相等進行解答.【題目詳解】因為,解得:,,當時,,不符合題意,應舍去.故選:B.【題目點撥】第三象限點的坐標特征是負負,第三象限角平分線上的點的特征是橫縱坐標相等,掌握其特征是解本題的關鍵.9、D【分析】要求EP+CP的最小值,需考慮通過作輔助線轉化EP,CP的值,從而找出其最小值求解【題目詳解】連接BE,與AD交于點G.∵△ABC是等邊三角形,AD是BC邊上的中線,∴AD⊥BC,∴AD是BC的垂直平分線,∴點C關于AD的對稱點為點B,∴BE就是EP+CP的最小值.∴G點就是所求點,即點G與點P重合,∵等邊△ABC的邊長為8,E為AC的中點,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值為,故選D.【題目點撥】此題考查軸對稱-最短路線問題,等邊三角形的對稱性、三線合一的性質以及勾股定理的運用,熟練掌握,即可解題.10、C【解題分析】試題分析:根據(jù)一元二次方程的定義進行解得2m﹣1=2,解得m=.故選C.考點:一元二次方程的定義11、B【題目詳解】解:連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°?∠BAD=42°,∴∠DCA=∠ABD=42°故選B12、D【題目詳解】由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【題目點撥】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.二、填空題(每題4分,共24分)13、【分析】作AH⊥BC交CB的延長線于H,根據(jù)反比例函數(shù)解析式求出A的坐標、點B的坐標,求出AH、BH,根據(jù)勾股定理求出AB,根據(jù)菱形的面積公式計算即可.【題目詳解】作AH⊥BC交CB的延長線于H,∵反比例函數(shù)y=的圖象經(jīng)過A、B兩點,A、B兩點的橫坐標分別為1和3,∴A、B兩點的縱坐標分別為3和1,即點A的坐標為(1,3),點B的坐標為(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四邊形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面積=BC×AH=4,故答案為4.【題目點撥】本題考查的是反比例函數(shù)的系數(shù)k的幾何意義、菱形的性質,根據(jù)反比例函數(shù)解析式求出A的坐標、點B的坐標是解題的關鍵.14、16【分析】根據(jù)題意可知四個小正方形的面積相等,構造出直角△OAB,設小正方形的面積為x,根據(jù)勾股定理求出x值即可得到小正方形的邊長,從而算出4個小正方形的面積和.【題目詳解】解:如圖,點A為上面小正方形邊的中點,點B為小正方形與圓的交點,D為小正方形和大正方形重合邊的中點,由題意可知:四個小正方形全等,且△OCD為等腰直角三角形,∵⊙O半徑為5,根據(jù)垂徑定理得:∴OD=CD==5,設小正方形的邊長為x,則AB=,則在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四個小正方形的面積和=.故答案為:16.【題目點撥】本題考查了垂徑定理、勾股定理、正方形的性質,熟練掌握利用勾股定理解直角三角形是解題的關鍵.15、【分析】由半圓的半徑可得出圓錐的母線及底面半徑的長度,利用勾股定理即可求出圓錐的高.【題目詳解】設底面圓的半徑為r.∵半徑為10cm的半圓圍成一個圓錐,∴圓錐的母線l=10cm,∴,解得:r=5(cm),∴圓錐的高h(cm).故答案為5.【題目點撥】本題考查了圓錐的計算,利用勾股定理求出圓錐的高是解題的關鍵.16、①②③【分析】①由四邊形ABCD是菱形,得出對角線平分對角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS證得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正確;②由DF⊥AB,F(xiàn)為邊AB的中點,證得AD=BD,證出△ABD為等邊三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB?cos∠BAC,AG,求出AC,AG,即可得出②正確;③由勾股定理求出DF,由GE=tan∠2?ED求出GE,即可得出③正確;④由S四邊形BFGC=S△ABC﹣S△AGF求出數(shù)值,即可得出④不正確.【題目詳解】∵四邊形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F為邊AB的中點,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正確;連接BD交AC于點O.∵DF⊥AB,F(xiàn)為邊AB的中點,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD為等邊三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB?cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正確;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2?ED=tan30°×1,∴DF+GECG,∴③正確;∵∠BAC=∠1=30°,∴△ABC的邊AC上的高等于AB的一半,即為1,F(xiàn)GAG,S四邊形BFGC=S△ABC﹣S△AGF211,∴④不正確.故答案為:①②③.【題目點撥】本題考查了菱形的性質、全等三角形的判定與性質、勾股定理、三角函數(shù)、線段垂直平分線的性質、含30°角的直角三角形的性質等知識;本題綜合性強,有一定難度.17、或【分析】根據(jù)中位線的性質,得出的關系式,代入即可.【題目詳解】根據(jù)中位線的性質故我們可得當均成立,故關系式正確∴故答案為:或.【題目點撥】本題考查了歸納總結的問題,掌握中位線的性質得出的關系式是解題的關鍵.18、(12,6)或(-12,-6)【分析】根據(jù)平行四邊形的性質、位似變換的性質計算,得到答案.【題目詳解】以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF∵點B的坐標為(4,2),且點B的對應點為點E∴點E的坐標為(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案為:(12,6)或(-12,-6).【題目點撥】本題考查了位似和平行四邊形的知識;求解的關鍵是熟練掌握位似的性質,從而完成求解.三、解答題(共78分)19、(1),點坐標為;(2)F;(3)【分析】(1)先求出點A,B的坐標,將A、B的坐標代入中,即可求解;

(2)確定直線BC的解析式為y=?x+3,根據(jù)點E、F關于直線x=1對稱,即可求解;

(3)若與相似,則或,即可求解;【題目詳解】解:(1)∵點、關于直線對稱,,∴,.代入中,得:,解,∴拋物線的解析式為.∴點坐標為;(2)設直線的解析式為,則有:,解得,∴直線的解析式為.∵點、關于直線對稱,又到對稱軸的距離為1,∴.∴點的橫坐標為2,將代入中,得:,∴F(2,1);(3)秒時,.如圖當時∴,∴,.①若,則,即(舍去),或.②若,則,即(舍去),或(舍去)∴.【題目點撥】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.20、(1);(2)m=-1.【分析】(1)根據(jù)一元二次方程有兩個實數(shù)根可得:△≥0,列出不等式即可求出的取值范圍;(2)根據(jù)根與系數(shù)的關系,分別表示出和,然后代入已知等式即可求出m的值.【題目詳解】(1)解:由題可知:解出:(2)解:由根與系數(shù)的關系得:,又∵∴解出:【題目點撥】此題考查的是求一元二次方程的參數(shù)的取值范圍和參數(shù)的值,掌握一元二次方程根的情況與△的關系和根與系數(shù)的關系是解決此題的關鍵.21、(1),頂點D(1,);(1)C(,0)或(,0)或(,0);(2)【解題分析】(1)拋物線的頂點D的橫坐標是1,則x1,拋物線過A(0,﹣2),則:函數(shù)的表達式為:y=ax1+bx﹣2,把B點坐標代入函數(shù)表達式,即可求解;(1)分AB=AC、AB=BC、AC=BC,三種情況求解即可;(2)由S△PAB?PH?xB,即可求解.【題目詳解】(1)拋物線的頂點D的橫坐標是1,則x1①,拋物線過A(0,﹣2),則:函數(shù)的表達式為:y=ax1+bx﹣2,把B點坐標代入上式得:9=15a+5b﹣2②,聯(lián)立①、②解得:a,b,c=﹣2,∴拋物線的解析式為:yx1x﹣2.當x=1時,y,即頂點D的坐標為(1,);(1)A(0,﹣2),B(5,9),則AB=12,設點C坐標(m,0),分三種情況討論:①當AB=AC時,則:(m)1+(﹣2)1=121,解得:m=±4,即點C坐標為:(4,0)或(﹣4,0);②當AB=BC時,則:(5﹣m)1+91=121,解得:m=5,即:點C坐標為(5,0)或(5﹣1,0);③當AC=BC時,則:5﹣m)1+91=(m)1+(﹣2)1,解得:m=,則點C坐標為(,0).綜上所述:存在,點C的坐標為:(±4,0)或(5,0)或(,0);(2)過點P作y軸的平行線交AB于點H.設直線AB的表達式為y=kx﹣2,把點B坐標代入上式,9=5k﹣2,則k,故函數(shù)的表達式為:yx﹣2,設點P坐標為(m,m1m﹣2),則點H坐標為(m,m﹣2),S△PAB?PH?xB(m1+11m)=-6m1+20m=,當m=時,S△PAB取得最大值為:.答:△PAB的面積最大值為.【題目點撥】本題是二次函數(shù)綜合題.主要考查了二次函數(shù)的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.22、小路寬為2米【分析】設出小路的寬,然后根據(jù)題意可得正方形平臺的面積為,小路的面積之和為,進而根據(jù)題意列出方程求解即可.【題目詳解】解:設小路寬為米據(jù)題意得:整理得:解得:(不合題意,舍去).答:小路寬為2米.【題目點撥】本題主要考查一元二次方程的實際應用,關鍵是根據(jù)圖形及題意把陰影部分的面積表示出來,進而列方程求解即可.23、.【分析】找出a,b,c的值,代入求根公式即可求出解.【題目詳解】解:這里a=2,b=3,c=﹣1,∵△=9+8=17,∴x=.考點:解一元二次方程-公式法.24、(1)b=-4,c=5;(2)當x=2時,二次函數(shù)有最小值為1【分析】(1)利用待定系數(shù)法求解即可;(2)根據(jù)圖象上點的坐標,可得出圖象的對稱軸及頂點坐標,即可得到答案.【題目詳解】(1)把(0,5),(1,2)代入y=x2+bx+c得:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論