2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省鄭州市名校聯(lián)考九年級數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.學?!靶@之聲”廣播站要選拔一名英語主持人,小瑩參加選拔的各項成績?nèi)缦拢盒彰x聽寫小瑩928090若把讀、聽、寫的成績按5:3:2的比例計入個人的總分,則小瑩的個人總分為()A.86 B.87 C.88 D.892.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A.4π B.3π C.2π+4 D.3π+43.中,,若,,則的長為()A. B. C. D.54.下列哪個方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣35.如圖,一張矩形紙片ABCD的長AB=xcm,寬BC=y(tǒng)cm,把這張紙片沿一組對邊AB和D的中點連線EF對折,對折后所得矩形AEFD與原矩形ADCB相似,則x:y的值為()A.2 B. C. D.6.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.7.用公式法解一元二次方程時,化方程為一般式當中的依次為()A. B. C. D.8.已知點(x1,y1)、(x2,y2)、(x3,y3)在反比例函數(shù)y=-的圖象上,當x1<x2<0<x3時,y1,y2,y3的大小關系是()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y19.對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關于直線y=﹣x成軸對稱10.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m211.如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,且AC=6,BD=8,P是對角線BD上任意一點,過點P作EF∥AC,與平行四邊形的兩條邊分別交于點E、F.設BP=x,EF=y(tǒng),則能大致表示y與x之間關系的圖象為()A. B.C. D.12.如圖,在中,,,,以點為圓心,的長為半徑作弧,交于點,則陰影部分的面積是()A. B. C. D.二、填空題(每題4分,共24分)13.已知點,在函數(shù)的圖象上,則的大小關系是________14.方程的根是_____.15.將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉75°,則點A的對應點A′的坐標為___________.16.飛機著陸后滑行的距離(單位:)關于滑行的時間(單位:)的函數(shù)解析式是,飛機著陸后滑行______才能停下來.17.如圖,在一個正方形圍欄中均為地散步著許多米粒,正方形內(nèi)有一個圓(正方形的內(nèi)切圓)一只小雞在圍欄內(nèi)啄食,則小雞正在圓內(nèi)區(qū)域啄食的概率為________.18.已知拋物線y=ax2+bx+3在坐標系中的位置如圖所示,它與x軸、y軸的交點分別為A,B,點P是其對稱軸x=1上的動點,根據(jù)圖中提供的信息,給出以下結論:①2a+b=0;②x=3是ax2+bx+3=0的一個根;③△PAB周長的最小值是+3.其中正確的是________.三、解答題(共78分)19.(8分)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.(1)求證:AC是⊙O的切線:(2)若BF=8,DF=,求⊙O的半徑;(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結果保留根號)20.(8分)解一元二次方程(1)(2)21.(8分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.22.(10分)為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;(2)若學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?23.(10分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.24.(10分)如圖,是的直徑,,為弧的中點,正方形繞點旋轉與的兩邊分別交于、(點、與點、、均不重合),與分別交于、兩點.(1)求證:為等腰直角三角形;(2)求證:;(3)連接,試探究:在正方形繞點旋轉的過程中,的周長是否存在最小值?若存在,求出其最小值;若不存在,請說明理由.25.(12分)某小區(qū)在綠化工程中有一塊長為20m,寬為8m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,使它們的面積之和為102m2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),求人行通道的寬度.26.如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)(2)在(1)條件下,連接,求的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、C【分析】利用加權平均數(shù)按照比例進一步計算出個人總分即可.【題目詳解】根據(jù)題意得:(分),∴小瑩的個人總分為88分;故選:C.【題目點撥】本題主要考查了加權平均數(shù)的求取,熟練掌握相關公式是解題關鍵.2、D【解題分析】試題解析:觀察該幾何體的三視圖發(fā)現(xiàn)其為半個圓柱,半圓柱的直徑為2,表面積有四個面組成:兩個半圓,一個側面,還有一個正方形.故其表面積為:故選D.3、B【分析】根據(jù)題意,可得=,又由AB=4,代入即可得AC的值.【題目詳解】解:∵中,,,∴=.∴AC=AB==.故選B.【題目點撥】本題考查解直角三角形、勾股定理,解答本題的關鍵是明確題意,利用銳角三角函數(shù)和勾股定理解答.4、D【分析】方程的兩邊都是整式,只含有一個未知數(shù),并且整理后未知數(shù)的最高次數(shù)都是2,像這樣的方程叫做一元二次方程,根據(jù)定義判斷即可.【題目詳解】A.2x+y=1是二元一次方程,故不正確;B.x2+1=2xy是二元二次方程,故不正確;C.x2+=3是分式方程,故不正確;D.x2=2x-3是一元二次方程,故正確;故選:D5、B【分析】根據(jù)相似多邊形對應邊的比相等,可得到一個方程,解方程即可求得.【題目詳解】解:∵四邊形ABCD是矩形,寬BC=y(tǒng)cm,

∴AD=BC=ycm,

由折疊的性質(zhì)得:AE=AB=x,

∵矩形AEFD與原矩形ADCB相似,

∴,即,

∴x2=2y2,

∴x=y,

∴.

故選:B.【題目點撥】本題考查了相似多邊形的性質(zhì)、矩形的性質(zhì)、翻折變換的性質(zhì);根據(jù)相似多邊形對應邊的比相等得出方程是解決本題的關鍵.6、A【解題分析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.7、B【分析】先整理成一般式,然后根據(jù)定義找出即可.【題目詳解】方程化為一般形式為:,.故選:.【題目點撥】題考查了一元二次方程的一般形式,一元二次方程的一般形式為ax2+bx+c=0(a≠0).其中a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.8、C【分析】根據(jù)反比例函數(shù)為y=-,可得函數(shù)圖象在第二、四象限,在每個象限內(nèi),y隨著x的增大而增大,進而得到y(tǒng)1,y2,y3的大小關系.【題目詳解】解:∵反比例函數(shù)為y=-,∴函數(shù)圖象在第二、四象限,在每個象限內(nèi),y隨著x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故選:C.【題目點撥】本題主要考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.9、D【解題分析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減??;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運用所學知識解決問題,屬于中考常考題型.10、A【分析】由OA4n=2n知OA2017=+1=1009,據(jù)此得出A2A2018=1009-1=1008,據(jù)此利用三角形的面積公式計算可得.【題目詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【題目點撥】本題主要考查點的坐標的變化規(guī)律,解題的關鍵是根據(jù)圖形得出下標為4的倍數(shù)時對應長度即為下標的一半,據(jù)此可得.11、A【分析】根據(jù)圖形先利用平行線的性質(zhì)求出△BEF∽△BAC,再利用相似三角形的性質(zhì)得出x的取值范圍和函數(shù)解析式即可解答【題目詳解】當0≤x≤4時,∵BO為△ABC的中線,EF∥AC,∴BP為△BEF的中線,△BEF∽△BAC,∴,即,解得y,同理可得,當4<x≤8時,.故選A.【題目點撥】此題考查動點問題的函數(shù)圖象,解題關鍵在于利用三角形的相似12、A【分析】根據(jù)直角三角形的性質(zhì)得到AC=BC=2,∠B=60°,根據(jù)扇形和三角形的面積公式即可得到結論.【題目詳解】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AC=BC=2,∠B=60°,∴陰影部分的面積=S△ACB-S扇形BCD=×2×2-=故選:A.【題目點撥】本題考查了扇形面積的計算,含30°角的直角三角形的性質(zhì),正確的識別圖形是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】把橫坐標分別代入關系式求出縱坐標,再比較大小即可.【題目詳解】∵A(3,y1),B(5,y2)在函數(shù)的圖象上,∴,,∴y1>y2.【題目點撥】本題考查反比例函數(shù),掌握反比例函數(shù)圖象上點的坐標特征是解題的關鍵.14、0和-4.【分析】根據(jù)因式分解即可求解.【題目詳解】解∴x1=0,x2=-4,故填:0和-4.【題目點撥】此題主要考查一元二次方程的求解,解題的關鍵是熟知一元二次方程的解法.15、(,)【解題分析】過A′作A′C⊥x軸于C,根據(jù)旋轉得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【題目詳解】如圖,過A′作A′C⊥x軸于C,∵將三角板繞原點O順時針旋轉75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐標為(,-).故答案為:(,).【題目點撥】本題考查的知識點是坐標與圖形變化-旋轉,解題的關鍵是熟練的掌握坐標與圖形變化-旋轉.16、200【分析】要求飛機從滑行到停止的路程就,即求出函數(shù)的最大值即可.【題目詳解】解:所以當t=20時,該函數(shù)有最大值200.故答案為200.【題目點撥】本題主要考查了二次函數(shù)的應用,掌握二次函數(shù)求最值的方法,即公式法或配方法是解題關鍵.17、【分析】設正方形的邊長為a,再分別計算出正方形與圓的面積,計算出其比值即可.【題目詳解】解:設正方形的邊長為a,則S正方形=a2,因為圓的半徑為,所以S圓=π()2=,所以“小雞正在圓圈內(nèi)”啄食的概率為:故答案為:【題目點撥】本題考查幾何概率,掌握正方形面積公式正確計算是解題關鍵.18、①②③【分析】①根據(jù)對稱軸方程求得的數(shù)量關系;②根據(jù)拋物線的對稱性知拋物線與x軸的另一個交點的橫坐標是3;③利用兩點間線段最短來求△PAB周長的最小值.【題目詳解】①根據(jù)圖象知,對稱軸是直線,則,即,故①正確;②根據(jù)圖象知,點A的坐標是,對稱軸是,則根據(jù)拋物線關于對稱軸對稱的性質(zhì)知,拋物線與軸的另一個交點的坐標是,所以是的一個根,故②正確;

③如圖所示,點關于對稱的點是,即拋物線與軸的另一個交點.

連接與直線x=1的交點即為點,此時的周長最小,

則周長的最小值是的長度.

∵,

∴,,∴周長的最小值是,故③正確.

綜上所述,正確的結論是:①②③.

故答案為:①②③.【題目點撥】本題考查的是二次函數(shù)綜合題,涉及到二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象的性質(zhì)以及兩點之間直線最短.解答該題時,充分利用了拋物線的對稱性.三、解答題(共78分)19、(1)證明見解析;(2)6;(3).【解題分析】(1)連接OA、OD,如圖,利用垂徑定理的推論得到OD⊥BE,再利用CA=CF得到∠CAF=∠CFA,然后利用角度的代換可證明∠OAD+∠CAF=,則OA⊥AC,從而根據(jù)切線的判定定理得到結論;(2)設⊙0的半徑為r,則OF=8-r,在Rt△ODF中利用勾股定理得到,然后解方程即可;(3)先證明△BOD為等腰直角三角形得到OB=,則OA=,再利用圓周角定理得到∠AOB=2∠ADB=,則∠AOE=,接著在Rt△OAC中計算出AC,然后用一個直角三角形的面積減去一個扇形的面積去計算陰影部分的面積.【題目詳解】(1)證明:連接OA、OD,如圖,∵D為BE的下半圓弧的中點,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切線;(2)解:設⊙O的半徑為r,則OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半徑為6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD為等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴陰影部分的面積=??﹣=.【題目點撥】本題主要考查圓、圓的切線及與圓相關的不規(guī)則陰影的面積,需綜合運用各知識求解.20、(1),;(2),【分析】(1)根據(jù)公式法即可求解;(2)根據(jù)因式分解法即可求解.【題目詳解】(1)a=2,b=-5,c=1∴b2-4ac=25-8=17>0故x=∴,(2)∴3x-2=0或-x+4=0故,.【題目點撥】此題主要考查一元二次方程的求解,解題的關鍵是熟知公式法及因式分解法的運用.21、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GBS∽△GCB,說明點S是△GBC的自相似點;又證得△DBG△DSB,說明點S是△GBD的自相似點.從而說明S(3,-2)是△GBD與△GBC公共的自相似點.【題目詳解】(1)如圖,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故點P是△ABC的自相似點;(2)點P只能在BC上,①△CPA∽△CAB,如圖,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,過點P作PD∥y軸交軸于D,∴,,∴,,∴,,P點的坐標為(,)②△BPA∽△BAC,如圖,由前面獲得的數(shù)據(jù):AB,,∵△BPA∽△BAC,∴,∴,∴,過點P作PE∥y軸交軸于E,∴,∴,∴,,∴,P點的坐標為(,);(3)存在.當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).理由如下:如圖:設直線AC的解析式為:,

∴,解得:,∴直線AC的解析式為:,過點D作DE⊥x軸于點E,

∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,設BE=a,則DE=3a,∴OE=3-a,∴點D的坐標為(3-a,-3a),∵點D在直線AC上,∴,解得:,∴點D的坐標為(,);如下圖:當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).直線AC的解析式為:,

∵,,∴點G、點S在直線AC上,過點G作GH⊥x軸于點H,∵,∴,由S(3,)、B(3,0)知BS⊥x軸,∴△AED、△ABS、△AHG為等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴點S是△GBC的自相似點;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴點S是△GBD的自相似點.∴S(3,)是△GBD與△GBC公共的自相似點.【題目點撥】本題主要考查了相似三角形的判定,涉及的知識有:平面內(nèi)點的特征、待定系數(shù)法求直線的解析式、等腰直角三角形的判定和性質(zhì)、勾股定理,讀懂題意,理清“自相似點”的概念是解題的關鍵.22、(1)購買一副乒乓球拍28元,一副羽毛球拍60元;(2)這所中學最多可購買20副羽毛球拍.【分析】(1)設購買一副乒乓球拍x元,一副羽毛球拍y元,由購買2副乒乓球拍和1副羽毛球拍共需116元,購買3副乒乓球拍和2副羽毛球拍共需204元,可得出方程組,解出即可.(2)設可購買a副羽毛球拍,則購買乒乓球拍(30﹣a)副,根據(jù)購買足球和籃球的總費用不超過1480元建立不等式,求出其解即可.【題目詳解】(1)設購買一副乒乓球拍x元,一副羽毛球拍y元,由題意得,,解得:.答:購買一副乒乓球拍28元,一副羽毛球拍60元.(2)設可購買a副羽毛球拍,則購買乒乓球拍(30﹣a)副,由題意得,60a+28(30﹣a)≤1480,解得:a≤20,答:這所中學最多可購買20副羽毛球拍.考點:一元一次不等式的應用;二元一次方程組的應用.23、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【題目詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【題目點撥】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.24、(1)見解析;(2)見解析;(3)存在,【分析】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論