山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省青島市2024屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,等腰與等腰是以點為位似中心的位似圖形,位似比為,則點的坐標(biāo)是()A. B. C. D.2.如圖,在△ABC中,∠BAC=65°,將△ABC繞點A逆時針旋轉(zhuǎn),得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'的度數(shù)為()A.65° B.50° C.80° D.130°3.下列事件中,屬于必然事件的是()A.明天的最高氣溫將達35℃B.任意購買一張動車票,座位剛好挨著窗口C.?dāng)S兩次質(zhì)地均勻的骰子,其中有一次正面朝上D.對頂角相等4.如右圖,在的正方形網(wǎng)格中,每個小正方形的邊長都是1,的頂點都在格點上,則的值為()A. B. C. D.5.如圖,在△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,下列說法正確的是()A.點O是△ABC的內(nèi)切圓的圓心B.CE⊥ABC.△ABC的內(nèi)切圓經(jīng)過D,E兩點D.AO=CO6.如圖,△ABC中,D為AC中點,AF∥DE,S△ABF:S梯形AFED=1:3,則S△ABF:S△CDE=()A.1:2 B.2:3 C.3:4 D.1:17.如圖,點A、B、C均在⊙O上,若∠AOC=80°,則∠ABC的大小是()A.30° B.35° C.40° D.50°8.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根9.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.10.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊二、填空題(每小題3分,共24分)11.如圖,A,B,C是⊙O上三點,∠AOC=∠B,則∠B=_______度.12.一元二次方程的根的判別式的值為____.13.一個半徑為5cm的球形容器內(nèi)裝有水,若水面所在圓的直徑為8cm,則容器內(nèi)水的高度為_____cm.14.如圖,現(xiàn)有測試距離為5m的一張視力表,表上一個E的高AB為2cm,要制作測試距離為3m的視力表,其對應(yīng)位置的E的高CD為____cm.15.方程的解是_____________.16.如圖,已知⊙P的半徑為4,圓心P在拋物線y=x2﹣2x﹣3上運動,當(dāng)⊙P與x軸相切時,則圓心P的坐標(biāo)為_____.17.如圖,圓心角都是90°的扇形OAB與扇形OCD疊放在一起,OA=3,OC=1,分別連接AC、BD,則圖中陰影部分的面積為_____.18.如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=.三、解答題(共66分)19.(10分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).20.(6分)某市有、兩個公園,甲、乙、丙三位同學(xué)隨機選擇其中一個公園游玩,請利用樹狀圖求三位同學(xué)恰好在同一個公園游玩的概率.21.(6分)用你喜歡的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=022.(8分)如果某人滑雪時沿著一斜坡下滑了130米的同時,在鉛垂方向上下降了50米,那么該斜坡的坡度是1∶_______23.(8分)如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=1.(1)求拋物線的解析式.(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.注:二次函數(shù)(≠0)的對稱軸是直線=.24.(8分)如圖①,若拋物線的頂點在拋物線上,拋物線的頂點在拋物線上,(點與點不重合),我們把這樣的兩條拋物線和,互稱為“友好”拋物線.(1)一條拋物線的“友好”拋物線有條;(2)如圖②,已知拋物線與軸相交于點,點關(guān)于拋物線的對稱軸的對稱點為點,求以點為頂點的的“友好”拋物線的表達式;(3)若拋物線的“友好”拋物線的解析式為,請直接寫出與的關(guān)系式.25.(10分)如圖,在Rt△ABC中,∠C=90°,過AC上一點D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.26.(10分)已知實數(shù)滿足,求的值.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)位似比為,可得,從而得:CE=DE=12,進而求得OC=6,即可求解.【題目詳解】∵等腰與等腰是以點為位似中心的位似圖形,位似比為,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴點的坐標(biāo)是:.故選A.【題目點撥】本題主要考查位似圖形的性質(zhì),掌握位似圖形的位似比等于相似比,是解題的關(guān)鍵.2、B【分析】根據(jù)平行線的性質(zhì)可得,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,根據(jù)等邊對等角可得,利用三角形的內(nèi)角和定理求出,根據(jù)等式的基本性質(zhì)可得,從而求出結(jié)論.【題目詳解】解:∵∠BAC=65°,∥AB∴由旋轉(zhuǎn)的性質(zhì)可得,∴,∴,∴故選B.【題目點撥】此題考查的是平行線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì),掌握平行線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等邊對等角是解決此題的關(guān)鍵.3、D【解題分析】A、明天最高氣溫是隨機的,故A選項錯誤;B、任意買一張動車票,座位剛好挨著窗口是隨機的,故B選項錯誤;C、擲骰子兩面有一次正面朝上是隨機的,故C選項錯誤;D、對頂角一定相等,所以是真命題,故D選項正確.【題目詳解】解:“對頂角相等”是真命題,發(fā)生的可能性為100%,故選:D.【題目點撥】本題的考點是隨機事件.解決本題需要正確理解必然事件的概念:必然事件指在一定條件下一定發(fā)生的事件.4、A【分析】過作于,首先根據(jù)勾股定理求出,然后在中即可求出的值.【題目詳解】如圖,過作于,則,=1..故選:A.【題目點撥】本題考查了勾股定理的運用以及銳角三角函數(shù),正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.5、A【分析】由∠BAC的平分線AD與∠ACB的平分線CE交于點O,得出點O是△ABC的內(nèi)心即可.【題目詳解】解:∵△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,∴點O是△ABC的內(nèi)切圓的圓心;故選:A.【題目點撥】本題主要考察三角形的內(nèi)切圓與內(nèi)心,解題關(guān)鍵是熟練掌握三角形的內(nèi)切圓性質(zhì).6、D【分析】本題考查了平行四邊形性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,注意:相似三角形的面積比等于相似比的平方.【題目詳解】△ABC中,∵AF∥DE,∴△CDE∽△CAF,∵D為AC中點,∴CD:CA=1:2,∴S△CDE:S△CAF=(CD:CA)2=1:4,∴S△CDE:S梯形AFED=1:3,又∵S△ABF:S梯形AFED=1:3,∴S△ABF:S△CDE=1:1.故選D.【題目點撥】本題考查了中點的定義,相似三角形的判定與性質(zhì),根據(jù)相似三角形的性質(zhì)得出S△CDE:S△CAF=1:4是解題的關(guān)鍵.7、C【分析】根據(jù)圓周角與圓心角的關(guān)鍵即可解答.【題目詳解】∵∠AOC=80°,∴.故選:C.【題目點撥】此題考查圓周角定理:同弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8、A【分析】根據(jù)拋物線的頂點坐標(biāo)的縱坐標(biāo)為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【題目詳解】∵函數(shù)的頂點的縱坐標(biāo)為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【題目點撥】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.9、D【解題分析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).【題目詳解】解:綠球的概率:P==,故選:D.【題目點撥】本題考查概率相關(guān)概念,熟練運用概率公式計算是解題的關(guān)鍵.10、B【解題分析】根據(jù)事件發(fā)生的可能性大小即可判斷.【題目詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機事件,故錯誤;故選B.【題目點撥】此題主要考查事件發(fā)生的可能性,解題的關(guān)鍵是熟知概率的定義.二、填空題(每小題3分,共24分)11、1【分析】連結(jié)OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四邊形內(nèi)角和360゜,可求∠B.【題目詳解】如圖,連結(jié)OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案為:1.【題目點撥】本題考查圓周角度數(shù)問題,要抓住半徑相等構(gòu)造兩個等腰三角形,把問題轉(zhuǎn)化為解∠B的方程是關(guān)鍵.12、1.【解題分析】直接利用根的判別式△=b2-4ac求出答案.【題目詳解】一元二次方程x2+3x=0根的判別式的值是:△=32-4×1×0=1.故答案為1.【題目點撥】此題主要考查了根的判別式,正確記憶公式是解題關(guān)鍵.13、2或1【分析】分兩種情況:(1)容器內(nèi)水的高度在球形容器的球心下面;(2)容器內(nèi)水的高度在球形容器的球心上面;根據(jù)垂徑定理和勾股定理計算即可求解.【題目詳解】過O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,則OC3(cm).分兩種情況討論:(1)容器內(nèi)水的高度在球形容器的球心下面時,如圖①,延長OC交⊙O于D,容器內(nèi)水的高度為CD=OD﹣CO=5﹣3=2(cm);(2)容器內(nèi)水的高度在球形容器的球心是上面時,如圖②,延長CO交⊙O于D,容器內(nèi)水的高度為CD=OD+CO=5+3=1(cm).則容器內(nèi)水的高度為2cm或1cm.故答案為:2或1.【題目點撥】本題考查了垂徑定理以及勾股定理,勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.注意分類思想的應(yīng)用.14、1.1【分析】證明△OCD∽△OAB,然后利用相似比計算出CD即可.【題目詳解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即對應(yīng)位置的E的高CD為1.1cm.故答案為1.1.【題目點撥】本題考查了相似三角形的應(yīng)用:常常構(gòu)造“A”型或“X”型相似圖,利用三角形相似的性質(zhì)求相應(yīng)線段的長.15、x1=3,x2=-1【分析】利用因式分解法解方程.【題目詳解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案為:x1=3,x2=-1.【題目點撥】此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的方法解方程是關(guān)鍵.16、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根據(jù)已知⊙P的半徑為4和⊙P與x軸相切得出P點的縱坐標(biāo),進而得出其橫坐標(biāo),即可得出答案.【題目詳解】解:當(dāng)半徑為4的⊙P與x軸相切時,此時P點縱坐標(biāo)為4或﹣4,∴當(dāng)y=4時,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此時P點坐標(biāo)為:(1+2,4),(1﹣2,4),當(dāng)y=﹣4時,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此時P點坐標(biāo)為:(1,﹣4).綜上所述:P點坐標(biāo)為:(1+2,4),(1﹣2,4),(1,﹣4).故答案為:(1+2,4),(1﹣2,4),(1,﹣4).【題目點撥】此題是二次函數(shù)綜合和切線的性質(zhì)的綜合題,解答時通過數(shù)形結(jié)合以得到P點縱坐標(biāo)是解題關(guān)鍵。17、2π【解題分析】通過分析圖可知:△ODB經(jīng)過旋轉(zhuǎn)90°后能夠和△OCA重合(證全等也可),因此圖中陰影部分的面積=扇形AOB的面積-扇形COD的面積,所以S陰=π×(9-1)=2π.【題目詳解】由圖可知,將△OAC順時針旋轉(zhuǎn)90°后可與△ODB重合,∴S△OAC=S△OBD;因此S陰影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案為2π.【題目點撥】本題中陰影部分的面積可以看作是扇形AOB與扇形COD的面積差,求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個規(guī)則圖形的面積的和或差來求.18、π.【解題分析】圖1,過點O做OE⊥AC,OF⊥BC,垂足為E.

F,則∠OEC=∠OFC=90°∵∠C=90°∴四邊形OECF為矩形∵OE=OF∴矩形OECF為正方形設(shè)圓O的半徑為r,則OE=OF=r,AD=AE=3?r,BD=4?r∴3?r+4?r=5,r==1∴S1=π×12=π圖2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴S1+S2=π×()2+π×()2=π.圖3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴⊙F的半徑=,∴S1+S2+S3=π×()2+π×()2+π×()2=π三、解答題(共66分)19、大樹的高度為(9+3)米【分析】根據(jù)矩形性質(zhì)得出,再利用銳角三角函數(shù)的性質(zhì)求出問題即可.【題目詳解】解:如圖,過點D作DG⊥BC于G,DH⊥CE于H,則四邊形DHCG為矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,設(shè)BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大樹的高度為(9+3)米.【題目點撥】本題考查了仰角、坡角的定義,解直角三角形的應(yīng)用,能借助仰角構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形是解題的關(guān)鍵.20、,見解析【分析】利用樹狀圖法找出所有的可能情況,再找三位同學(xué)恰好在同一個公園游玩的情況個數(shù),即可求出所求的概率.【題目詳解】解:樹狀圖如下:由上圖可知一共有種等可能性,即、、、、、、、,它們出現(xiàn)的可能性選擇,其中三位同學(xué)恰好在同一個公園游玩的有種等可能性,∴.【題目點撥】此題考查了列表法與樹狀圖法,以及概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可.【題目詳解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=x1=1+,x2=1﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣1)=0,2x+5=0,x﹣1=0,x1=﹣2.5,x2=1.【題目點撥】此題考查一元二次方程的解法,根據(jù)每個方程的特點選擇適合的方法是關(guān)鍵,由此才能使計算更簡便.22、2.4.【解題分析】試題解析:如圖所示:AC=130米,BC=50米,則米,則坡比故答案為:23、(2)(2)P(,)【題目詳解】解:(2)∵OA=2,OC=2,∴A(-2,0),C(0,2).將C(0,2)代入得c=2.將A(-2,0)代入得,,解得b=,∴拋物線的解析式為;(2)如圖:連接AD,與對稱軸相交于P,由于點A和點B關(guān)于對稱軸對稱,則BP+DP=AP+DP,當(dāng)A、P、D共線時BP+DP=AP+DP最小.設(shè)直線AD的解析式為y=kx+b,將A(-2,0),D(2,2)分別代入解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論