2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省成都市雙流區(qū)棠湖中學高一上數(shù)學期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.是定義在上的偶函數(shù),在上單調(diào)遞增,,,則下列不等式成立的是()A. B.C. D.2.已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,則該三棱錐的外接球的表面積為()A.π B.6πC.5π D.8π3.設,則下列不等式中不成立的是()A. B.C. D.4.我國著名數(shù)學家華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔離分家萬事休.”在數(shù)學學習和研究中,我們要學會以形助數(shù).則在同一直角坐標系中,與的圖像可能是()A. B.C. D.5.已知函數(shù),則()A.2 B.5C.7 D.96.函數(shù)的零點所在區(qū)間是()A. B.C. D.7.設,,則的值為()A. B.C.1 D.e8.已知是定義在上的偶函數(shù),且在上單調(diào)遞減,若,,,則、、的大小關系為()A. B.C. D.9.已知圓,圓,則兩圓的位置關系為A.相離 B.相外切C.相交 D.相內(nèi)切10.表示不超過x的最大整數(shù),例如,.若是函數(shù)的零點,則()A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知且,函數(shù)的圖象恒經(jīng)過定點,正數(shù)、滿足,則的最小值為____________.12.邊長為2的正方形ABCD沿對角線BD折成直二面角,則折疊后AC的長為________13.當時,函數(shù)取得最大值,則___________.14.已知,則_________15.某圓錐體的側面展開圖是半圓,當側面積是時,則該圓錐體的體積是_______16.已知函數(shù),則無論取何值,圖象恒過的定點坐標______;若在上單調(diào)遞減,則實數(shù)的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中.(1)若是周期為的偶函數(shù),求及的值.(2)若在上是增函數(shù),求的最大值.(3)當時,將函數(shù)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若在上至少含有10個零點,求b的最小值.18.人口問題是世界普遍關注的問題,通過對若干個大城市的統(tǒng)計分析,針對人口密度分布進行模擬研究,發(fā)現(xiàn)人口密度與到城市中心的距離之間呈現(xiàn)負指數(shù)關系.指數(shù)模型是經(jīng)典的城市人口密度空間分布的模型之一,該模型的計算是基于圈層距離法獲取距城市中心距離和人口密度數(shù)據(jù)的,具體而言就是以某市中心位置為圓心,以不同的距離為半徑劃分圈層,測量和分析不同圈層中的人口狀況.其中x是圈層序號,將圈層序號是x的區(qū)域稱為“x環(huán)”(時,1環(huán)表示距離城市中心0~3公里的圈層;時,2環(huán)表示距離城市中心3~6公里的圈層;以此類推);是城市中心的人口密度(單位:萬人/平方公里),為x環(huán)的人口密度(單位:萬人/平方公里);b為常數(shù);.下表為某市2006年和2016年人口分布的相關數(shù)據(jù):年份b20062.20.1320162.30.10(1)求該市2006年2環(huán)處的人口密度(參考數(shù)據(jù):,結果保留一位小數(shù));(2)2016年該市某環(huán)處的人口密度為市中心人口密度的,求該環(huán)是這個城市的多少環(huán).(參考數(shù)據(jù):)19.如圖所示,正四棱錐中,為底面正方形的中心,側棱與底面所成的角的正切值為(1)若是的中點,求異面直線與所成角的正切值(2)在棱上是否存在一點,使側面,若存在,試確定點的位置;若不存在,說明理由20.為了做好新冠疫情防控工作,某學校要求全校各班級每天利用課間操時間對各班教室進行藥熏消毒.現(xiàn)有一種備選藥物,根據(jù)測定,教室內(nèi)每立方米空氣中的藥含量(單位:mg)隨時間(單位:)的變化情況如圖所示,在藥物釋放的過程中與成正比,藥物釋放完畢后,與的函數(shù)關系為(為常數(shù)),其圖象經(jīng)過,根據(jù)圖中提供的信息,解決下面的問題.(1)求從藥物釋放開始,與的函數(shù)關系式;(2)據(jù)測定,當空氣中每立方米的藥物含量降低到mg以下時,才能保證對人身無害,若該校課間操時間為分鐘,據(jù)此判斷,學校能否選用這種藥物用于教室消毒?請說明理由.21.已知,,(1)值;(2)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】根據(jù)對數(shù)的運算法則,得到,結合偶函數(shù)的定義以及對數(shù)函數(shù)的單調(diào)性,得到自變量的大小,根據(jù)函數(shù)在上的單調(diào)性,得到函數(shù)值的大小,得到選項.【題目詳解】,而,因為是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,所以,故選:C.2、B【解題分析】由題意結合平面幾何、線面垂直的判定與性質(zhì)可得BC⊥BD,AD⊥AC,再由平面幾何的知識即可得該幾何體外接球的球心及半徑,即可得解.【題目詳解】AB=BC=1,AD=2,BD=,AC=,∴,,∴DA⊥AB,AB⊥BC,由BC⊥AD可得BC⊥平面DAB,DA⊥平面ABC,∴BC⊥BD,AD⊥AC,∴CD=,由直角三角形的性質(zhì)可知,線段CD的中點O到點A,B,C,D的距離均為,∴該三棱錐外接球的半徑為,故三棱錐的外接球的表面積為4π=6π.故選:B.【題目點撥】本題考查了三棱錐幾何特征的應用及其外接球表面積的求解,考查了運算求解能力與空間思維能力,屬于中檔題.3、B【解題分析】對于A,C,D利用不等式的性質(zhì)分析即可,對于B舉反例即可【題目詳解】對于A,因為,所以,所以,即,所以A成立;對于B,若,,則,,此時,所以B不成立;對于C,因為,所以,所以C成立;對于D,因為,所以,則,所以D成立,故選:B.【題目點撥】本題考查不等式的性質(zhì)的應用,屬于基礎題.4、B【解題分析】結合指數(shù)函數(shù)和對數(shù)函數(shù)的圖像即可.【題目詳解】是定義域為R的增函數(shù),:-x>0,則x<0.結合選項只有B符合故選:B5、D【解題分析】先求出,再求即可,【題目詳解】由題意得,所以,故選:D6、B【解題分析】判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)零點存在性定理即可判斷.【題目詳解】函數(shù)的定義域為,且函數(shù)在上單調(diào)遞減;在上單調(diào)遞減,所以函數(shù)為定義在上的連續(xù)減函數(shù),又當時,,當時,,兩函數(shù)值異號,所以函數(shù)的零點所在區(qū)間是,故選:B.7、A【解題分析】根據(jù)所給分段函數(shù)解析式計算可得;【題目詳解】解:因為,,所以,所以故選:A8、D【解題分析】分析可知函數(shù)在上為增函數(shù),比較、、的大小,結合函數(shù)的單調(diào)性與偶函數(shù)的性質(zhì)可得出結論.【題目詳解】因為偶函數(shù)在上為減函數(shù),則該函數(shù)在上為增函數(shù),,則,即,,,所以,,故,即.故選:D.9、A【解題分析】利用半徑之和與圓心距的關系可得正確的選項.【題目詳解】圓,即,圓心為(0,3),半徑為1,圓,即,圓心為(4,0),半徑為3..所以兩圓相離,故選:A.10、B【解題分析】利用零點存在定理得到零點所在區(qū)間求解.【題目詳解】因為函數(shù)在定義域上連續(xù)的增函數(shù),且,又∵是函數(shù)的零點,∴,所以,故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、9【解題分析】由指數(shù)函數(shù)的性質(zhì)可得函數(shù)的圖象恒經(jīng)過定點,進而可得,然后利用基本不等式中“1”的妙用即可求解.【題目詳解】解:因為函數(shù)的圖象恒經(jīng)過定點,所以,又、為正數(shù),所以,當且僅當,即時等號成立,所以的最小值為9.故答案為:9.12、2【解題分析】取的中點,連接,,則,則為二面角的平面角點睛:取的中點,連接,,根據(jù)正方形可知,,則為二面角的平面角,在三角形中求出的長.本題主要是在折疊問題中考查了兩點間的距離.折疊問題要注意分清在折疊前后哪些量發(fā)生了變化,哪里量沒變13、##【解題分析】由輔助角公式,正弦函數(shù)的性質(zhì)求出,,再根據(jù)兩角和的正切和公式,誘導公式求.【題目詳解】(其中,),當時,函數(shù)取得最大值∴,,即,,所以,.故答案為:.14、【解題分析】利用交集的運算解題即可.【題目詳解】交集即為共同的部分,即.故答案為:15、【解題分析】設圓錐的母線長為,底面半徑為,則,,,,所以圓錐的高為,體積為.考點:圓錐的側面展開圖與體積.16、①.②.【解題分析】計算的值,可得出定點坐標;分析可知,對任意的,,利用參變量分離法可求得,分、、三種情況討論,分析函數(shù)在上的單調(diào)性,由此可得出實數(shù)的取值范圍.【題目詳解】因為,故函數(shù)圖象恒過的定點坐標為;由題意可知,對任意的,,則,因為函數(shù)在上單調(diào)遞增,且當時,,所以,.當時,在上為減函數(shù),函數(shù)為增函數(shù),所以,函數(shù)、在上均為減函數(shù),此時,函數(shù)在上為減函數(shù),合乎題意;當且時,,不合乎題意;當時,在上為增函數(shù),函數(shù)為增函數(shù),函數(shù)、在上均為增函數(shù),此時,函數(shù)在上為增函數(shù),不合乎題意.綜上所述,若在上單調(diào)遞減,.故答案為:;.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,;(2);(3).【解題分析】(1)由題知,,進而求解即可得答案;(2)由題知函數(shù)在上是增函數(shù),故,進而解不等式即可得答案.(3)由題知,進而根據(jù)題意得方程在上至少含有10個零點,進而得,再解不等式即可得答案.【題目詳解】解:(1)由題知,因為是周期為的偶函數(shù),所以,,解得:,,所以,.(2)因為,所以,因為函數(shù)在上是增函數(shù),所以函數(shù)在上是增函數(shù),所以,解得,又因為,故.所以的最大值為.(3)當時,,所以,當時,,又因為函數(shù)在上至少含有10個零點,所以方程在上至少含有10個零點,所以,解得故b最小值為.【題目點撥】本題考查三角函數(shù)圖像平移變換,正弦型函數(shù)的性質(zhì),考查運算求解能力,化歸轉(zhuǎn)化思想,是中檔題.本題解題的關鍵件在于利用整體換元的思想,將為題轉(zhuǎn)化為利用函數(shù)的圖像性質(zhì)求解.18、(1)1.7(2)4【解題分析】(2)根據(jù)表中數(shù)據(jù),由求解;(2)根據(jù)2016年該市某環(huán)處的人口密度為市中心人口密度的,由求解.【小問1詳解】解:由表中數(shù)據(jù)得:;【小問2詳解】因為2016年該市某環(huán)處的人口密度為市中心人口密度的,所以,即,所以,解得,所以該環(huán)是這個城市的4環(huán).19、(1);(2)為四等分點(靠近點A);答案見解析【解題分析】(1)取中點,連,,則可得為二面角的平面角,為側棱與底面所成的角,連接,則,從而可得或其補角為異面直線與所成的角,進而可求得答案;(2)延長交于,取中點,連、,由線面垂直的判定可得平面,則平面平面,再由線面垂直的判定可得平面,取的中點,可證得四邊形為平行四邊形,所以,從而可得側面【題目詳解】解:(1)取中點,連,,因為正四棱錐中,為底面正方形的中心,所以面,則為二面角的平面角,為側棱與底面所成的角,所以,連接,則,或其補角為異面直線與所成的角,因為,,,所以平面平面,所以,(2)延長交于,取中點,連、因為,,,故平面,因平面,故平面平面,又,,故為等邊三角形,所以,由平面,故,因為,所以平面,取的中點,,四邊形為平行四邊形,所以,平面即為AD的四等分點(靠近點A)20、(1);(2)可以,理由見解析.【解題分析】(1)將圖象上給定點的坐標代入對應的函數(shù)解析式計算作答.(2)利用(1)的結論結合題意,列出不等式求解作答.【小問1詳解】依題意,當時,設,因函數(shù)的圖象經(jīng)過點A,即,解得,又當時,,解得,而圖象過點,則,因此,所以與的函數(shù)關系式是.【小問2詳解】由(1)知,因藥物釋放完畢后有,,則當空氣中每立方米的藥物含量降低到mg以下,有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論