版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省鄭州市八校高一數(shù)學第一學期期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列六個關系式:⑴其中正確的個數(shù)為()A.6個 B.5個C.4個 D.少于4個2.定義在上的函數(shù)滿足下列三個條件:①;②對任意,都有;③的圖像關于軸對稱.則下列結論中正確的是AB.C.D.3.已知原點到直線的距離為1,圓與直線相切,則滿足條件的直線有A.1條 B.2條C.3條 D.4條4.下列命題正確的是A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行B.若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面交線平行D.若兩個平面都垂直于第三個平面,則這兩個平面平行5.已知等比數(shù)列滿足,,則()A. B.C. D.6.函數(shù)f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.7.已知的部分圖象如圖所示,則的表達式為A.B.C.D.8.給定已知函數(shù).若動直線y=m與函數(shù)的圖象有3個交點,則實數(shù)m的取值范圍為A. B.C. D.9.下列函數(shù)中,既是奇函數(shù)又存在零點的函數(shù)是()A. B.C. D.10.已知直線,若,則的值為()A.8 B.2C. D.-2二、填空題:本大題共6小題,每小題5分,共30分。11.在平行四邊形中,為上的中點,若與對角線相交于,且,則__________12.某地為踐行綠水青山就是金山銀山的理念,大力開展植樹造林.假設一片森林原來的面積為畝,計劃每年種植一些樹苗,且森林面積的年增長率相同,當面積是原來的倍時,所用時間是年(1)求森林面積的年增長率;(2)到今年為止,森林面積為原來的倍,則該地已經(jīng)植樹造林多少年?(3)為使森林面積至少達到畝,至少需要植樹造林多少年(精確到整數(shù))?(參考數(shù)據(jù):,)13.已知函數(shù)是定義在的奇函數(shù),則實數(shù)b的值為_________;若函數(shù),如果對于,,使得,則實數(shù)a的取值范圍是__________14.大西洋鮭魚每年都要逆流而上游回產(chǎn)地產(chǎn)卵,研究魚的科學家發(fā)現(xiàn)大西洋鮭魚的游速(單位:)可以表示為,其中表示魚的耗氧量的單位數(shù).當一條大西洋鮭魚的耗氧量的單位數(shù)是其靜止時耗氧量的單位數(shù)的倍時,它的游速是________15.已知函數(shù),則當______時,函數(shù)取到最小值且最小值為_______.16.冪函數(shù)的圖象經(jīng)過點,則=____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象經(jīng)過點其中(1)求a的值;(2)若,求x的取值范圍.18.已知冪函數(shù)的圖像經(jīng)過點(),函數(shù)為奇函數(shù).(1)求冪函數(shù)的解析式及實數(shù)a的值;(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調性,并用的數(shù)單調性定義證明19.已知函數(shù),函數(shù)(1)求函數(shù)的值域;(2)若不等式對任意實數(shù)恒成立,試求實數(shù)的取值范圍20.已知函數(shù),(1)當時,求的最值;(2)若在區(qū)間上是單調函數(shù),求實數(shù)a取值范圍21.假設你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】根據(jù)集合自身是自身的子集,可知①正確;根據(jù)集合無序性可知②正確;根據(jù)元素與集合只有屬于與不屬于關系可知③⑤不正確;根據(jù)元素與集合之間的關系可知④正確;根據(jù)空集是任何集合的子集可知⑥正確,即正確的關系式個數(shù)為個,故選C.點睛:本題主要考查了:(1)點睛:集合的三要素是:確定性、互異性和無序性,;(2)元素和集合之間是屬于關系,子集和集合之間是包含關系;(3)不含任何元素的集合稱為空集,空集是任何集合的子集2、D【解題分析】先由,得函數(shù)周期為6,得到f(7)=f(1);再利用y=f(x+3)的圖象關于y軸對稱得到y(tǒng)=f(x)的圖象關于x=3軸對稱,進而得到f(1)=f(5);最后利用條件(2)得出結論因為,所以;即函數(shù)周期為6,故;又因為的圖象關于y軸對稱,所以的圖象關于x=3對稱,所以;又對任意,都有;所以故選:D考點:函數(shù)的奇偶性和單調性;函數(shù)的周期性.3、C【解題分析】由已知,直線滿足到原點的距離為,到點的距離為,滿足條件的直線即為圓和圓的公切線,因為這兩個圓有兩條外公切線和一條內公切線.故選C.考點:相離兩圓的公切線4、C【解題分析】若兩條直線和同一平面所成角相等,這兩條直線可能平行,也可能為異面直線,也可能相交,所以A錯;一個平面不在同一條直線的三點到另一個平面的距離相等,則這兩個平面平行,故B錯;若兩個平面垂直同一個平面兩平面可以平行,也可以垂直;故D錯;故選項C正確.[點評]本題旨在考查立體幾何的線、面位置關系及線面的判定和性質,需要熟練掌握課本基礎知識的定義、定理及公式.5、C【解題分析】由題意可得,所以,故,選C.考點:本題主要考查等比數(shù)列性質及基本運算.6、A【解題分析】先利用三角恒等變化公式將函數(shù)化成形式,然后直接得出最值.【題目詳解】整理得,利用輔助角公式得,所以函數(shù)的最大值為,故選A.【題目點撥】三角函數(shù)求最值或者求值域一定要先將函數(shù)化成的形函數(shù).7、B【解題分析】由圖可知,,所以,所以,又當,即,所以,即,當時,,故選.考點:三角函數(shù)的圖象與性質.8、B【解題分析】畫出函數(shù)的圖像以及直線y=k的圖像,根據(jù)條件和圖像求得k的范圍?!绢}目詳解】設,由題可知,當,即或時,;當,即時,,因為,故當時,,當時,,做出函數(shù)的圖像如圖所示,直線y=m與函數(shù)有3個交點,可得k的范圍為(4,5).故選:B【題目點撥】本題考查函數(shù)圖像與直線有交點問題,先分別求出各段函數(shù)的解析式,再利用數(shù)形結合的方法得到參數(shù)的取值范圍。9、A【解題分析】判斷函數(shù)的奇偶性,可排除選項得出正確答案【題目詳解】因為是偶函數(shù),故B錯誤;是非奇非偶函數(shù),故C錯誤;是非奇非偶函數(shù),故D錯誤;故選:A.10、D【解題分析】根據(jù)兩條直線垂直,列方程求解即可.【題目詳解】由題:直線相互垂直,所以,解得:.故選:D【題目點撥】此題考查根據(jù)兩條直線垂直,求參數(shù)的取值,關鍵在于熟練掌握垂直關系的表達方式,列方程求解.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】由題意如圖:根據(jù)平行線分線段成比例定理,可知,又因為,所以根據(jù)三角形相似判定方法可以知道∵為的中點∴相似比為∴∴故答案為312、(1);(2)5年;(3)17年.【解題分析】(1)設森林面積的年增長率為,則,解出,即可求解;(2)設該地已經(jīng)植樹造林年,則,解出的值,即可求解;(3)設為使森林面積至少達到畝,至少需要植樹造林年,則,再結合對數(shù)函數(shù)的公式,即可求解.【小問1詳解】解:設森林面積的年增長率為,則,解得【小問2詳解】解:設該地已經(jīng)植樹造林年,則,,解得,故該地已經(jīng)植樹造林5年【小問3詳解】解:設為使森林面積至少達到畝,至少需要植樹造林年,則,,,,即取17,故為使森林面積至少達到畝,至少需要植樹造林17年13、①.0②.【解題分析】由,可得,設在的值域為,在上的值域為,根據(jù)題意轉化為,根據(jù)函數(shù)的單調性求得函數(shù)和的值域,結合集合的運算,列出不等式組,即可求解.【題目詳解】由函數(shù)是定義在的奇函數(shù),可得,即,經(jīng)檢驗,b=0成立,設在值域為,在上的值域為,對于,,使得,等價于,又由為奇函數(shù),可得,當時,,,所以在的值域為,因為在上單調遞增,在上單調遞減,可得的最小值為,最大值為,所以函數(shù)的值域為,則,解得,即實數(shù)的取值范圍為.故答案為:;.14、【解題分析】設大西洋鮭魚靜止時的耗氧量為,計算出的值,再將代入,即可得解.【題目詳解】設大西洋鮭魚靜止時的耗氧量為,則,可得,將代入可得.故答案為:.15、①.②.【解題分析】利用基本不等式可得答案.【題目詳解】因為,所以,當且僅當即等號成立.故答案為:;.16、2【解題分析】根據(jù)冪函數(shù)過點,求出解析式,再有解析式求值即可.【題目詳解】設,則,所以,故,所以.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)根據(jù)函數(shù)過點代入解析式,即可求得的值;(2)由(1)可得函數(shù)的解析式,結合函數(shù)的單調性求出x的取值范圍.【題目詳解】解:(1)∵函數(shù)的圖象經(jīng)過點,即,可得;(2)由(1)得,即,,【題目點撥】本題考查待定系數(shù)法求函數(shù)解析式,以及由指數(shù)函數(shù)的單調性解不等式,屬于基礎題.18、(1);(2)在(-1,1)上單調遞增,證明見解析【解題分析】(1)首先代點,求函數(shù)的解析式,利用奇函數(shù)的性質,求,再驗證;(2)根據(jù)函數(shù)單調性的定義,設,作差,判斷符號,即可判斷函數(shù)的單調性.【小問1詳解】由條件可知,所以,即,,因為是奇函數(shù),所以,即,滿足是奇函數(shù),所以成立;【小問2詳解】由(1)可知,在區(qū)間上任意取值,且,,因為,所以,,所以,即,所以函數(shù)在區(qū)間上單調遞增.19、(1)[-4,﹢∞);(2)【解題分析】(1)將原函數(shù)轉化為二次函數(shù),根據(jù)求二次函數(shù)最值的方法求解即可.(2)由題意得,求得,然后通過解對數(shù)不等式可得所求范圍【題目詳解】(1)由題意得,即的值域為[-4,﹢∞).(2)由不等式對任意實數(shù)恒成立得,又,設,則,∴,∴當時,=∴,即,整理得,即,解得,∴實數(shù)x的取值范圍為【題目點撥】解答本題時注意一下兩點:(1)解決對數(shù)型問題時,可通過換元的方法轉化為二次函數(shù)的問題處理,解題時注意轉化思想方法的運用;(2)對于函數(shù)恒成立的問題,可根據(jù)題意轉化成求函數(shù)的最值的問題處理,特別是對于雙變量的問題,解題時要注意分清誰是主變量,誰是參數(shù)20、(1),.(2)【解題分析】(1)利用二次函數(shù)的性質求的最值即可.(2)由區(qū)間單調性,結合二次函數(shù)的性質:只需保證已知區(qū)間在對稱軸的一側,即可求a的取值范圍【小問1詳解】當時,,∴在上單凋遞減,在上單調遞增,∴,.【小問2詳解】,∴要使在上為單調函數(shù),只需或,解得或∴實數(shù)a的取值范圍為21、.【解題分析】設送報人到達的時間為X,小王離家去工作的時間為Y,(X,Y)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為Ω={(x,y)|6≤X≤8,7≤Y≤9}一個正方形區(qū)域,求出其面積,事件A表示小王離家前不能看到報紙,所構成的區(qū)域為A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面積,根據(jù)幾何概型的概率公式解之即可;試題解析:如圖,設送報人到達的時間為,小王離家去工作的時間為.(,)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為一個正方形區(qū)域,面積為,事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中外設備買賣合同模板
- 上海金融服務外包合作合同模板匯集
- 臨時教學樓改建工程合同
- 個人住房貸款合同樣本
- 臨時合作關系合同書
- 二手房購入合同范文:完整版
- 三人合伙投資合同范本
- 個人商業(yè)貸款抵押合同(1997年)版
- 個人債務履行擔保合同示例
- 個人定向捐贈合同模板修訂版
- 跨學科主題學習2-探索太空逐夢航天 說課稿-2024-2025學年粵人版地理七年級上冊
- 《電子技術應用》課程標準(含課程思政)
- 電力儲能用集裝箱技術規(guī)范
- 小學生雪豹課件
- 基礎護理常規(guī)制度
- 針灸治療動眼神經(jīng)麻痹
- 傾聽幼兒馬賽克方法培訓
- 設備日常維護及保養(yǎng)培訓
- 2024年建房四鄰協(xié)議范本
- FTTR-H 全光組網(wǎng)解決方案裝維理論考試復習試題
- 2024年安全生產(chǎn)月主題2024年學校安全生產(chǎn)月活動方案
評論
0/150
提交評論