版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南師大附中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平行四邊形的對角線相交于點點在的內(nèi)部(不含邊界).若則實數(shù)對可以是A. B.C. D.2.函數(shù)的零點在A. B.C. D.3.已知,則的最小值是()A.5 B.6C.7 D.84.已知,,則()A. B.C. D.5.已知定義域為的函數(shù)滿足:,且,當(dāng)時,,則等于()A B.C.2 D.46.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則7.已知,則下列結(jié)論中正確的是()A.的最大值為 B.在區(qū)間上單調(diào)遞增C.的圖象關(guān)于點對稱 D.的最小正周期為8.下列集合與集合相等的是()A. B.C. D.9.下列函數(shù)在定義域內(nèi)為奇函數(shù),且有最小值的是A. B.C. D.10.函數(shù)的一個零點所在的區(qū)間是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景的摩天輪.如圖,已知天津之眼的半徑是55m,最高點距離地面的高度為120m,開啟后按逆時針方向勻速轉(zhuǎn)動,每30轉(zhuǎn)動一圈.喜歡拍照的南鳶同學(xué)想坐在天津之眼上拍海河的景色,她在距離地面最近的艙位進艙.已知在距離地面超過92.5m的高度可以拍到最美的景色,則在天津之眼轉(zhuǎn)動一圈的過程中,南鳶同學(xué)可以拍到最美景色的時間是_________分鐘12.在平面直角坐標(biāo)系中,點在單位圓O上,設(shè),且.若,則的值為______________.13.函數(shù)的定義域為_________14.如圖,某化學(xué)實驗室的一個模型是一個正八面體(由兩個相同的正四棱錐組成,且各棱長都相等)若該正八面體的表面積為,則該正八面體外接球的體積為___________;若在該正八面體內(nèi)放一個球,則該球半徑的最大值為___________.15.已知且,且,函數(shù)的圖象過定點A,A在函數(shù)的圖象上,且函數(shù)的反函數(shù)過點,則______.16.已知,,則的值為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點在坐標(biāo)原點,始邊與軸的非負(fù)半軸重合,終邊經(jīng)過點P(-3,4)(1)求,的值;(2)的值18.如圖1,直角梯形ABCD中,,,.如圖2,將圖1中沿AC折起,使得點D在平面ABC上的正投影G在內(nèi)部.點E為AB的中點.連接DB,DE,三棱錐D-ABC的體積為.對于圖2的幾何體(1)求證:;19.已知函數(shù),(1)試比較與的大小關(guān)系,并給出證明;(2)解方程:;(3)求函數(shù),(是實數(shù))的最小值20.閱讀與探究人教A版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)4(必修)》在第一章小結(jié)中寫道:將角放在直角坐標(biāo)系中討論不但使角的表示有了統(tǒng)一的方法,而且使我們能夠借助直角坐標(biāo)系中的單位圓,建立角的變化與單位圓上點的變化之間的對應(yīng)關(guān)系,從而用單位圓上點的縱坐標(biāo)、橫坐標(biāo)來表示圓心角的正弦函數(shù)、余弦函數(shù).因此,正弦函數(shù)、余弦函數(shù)的基本性質(zhì)與圓的幾何性質(zhì)(主要是對稱性)之間存在著非常緊密的聯(lián)系.例如,和單位圓相關(guān)的“勾股定理”與同角三角函數(shù)的基本關(guān)系有內(nèi)在的一致性;單位圓周長為與正弦函數(shù)、余弦函數(shù)的周期為是一致的;圓的各種對稱性與三角函數(shù)的奇偶性、誘導(dǎo)公式等也是一致的等等.因此,三角函數(shù)的研究過程能夠很好地體現(xiàn)數(shù)形結(jié)合思想.依據(jù)上述材料,利用正切線可以討論研究得出正切函數(shù)的性質(zhì).比如:由圖1.2-7可知,角的終邊落在四個象限時均存在正切線;角的終邊落在軸上時,其正切線縮為一個點,值為;角的終邊落在軸上時,其正切線不存在;所以正切函數(shù)的定義域是.(1)請利用單位圓中的正切線研究得出正切函數(shù)的單調(diào)性和奇偶性;(2)根據(jù)閱讀材料中途1.2-7,若角為銳角,求證:.21.已知函數(shù)是偶函數(shù),且,.(1)當(dāng)時,求函數(shù)的值域;(2)設(shè),,求函數(shù)的最小值;(3)設(shè),對于(2)中的,是否存在實數(shù),使得函數(shù)在時有且只有一個零點?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】分析:根據(jù)x,y值確定P點位置,逐一驗證.詳解:因為,所以P在線段BD上,不合題意,舍去;因為,所以P在線段OD外側(cè),符合題意,因為,所以P在線段OB內(nèi)側(cè),不合題意,舍去;因為,所以P在線段OD內(nèi)側(cè),不合題意,舍去;選B.點睛:若,則三點共線,利用這個充要關(guān)系可確定點的位置.2、B【解題分析】利用零點的判定定理檢驗所給的區(qū)間上兩個端點的函數(shù)值,當(dāng)兩個函數(shù)值符號相反時,這個區(qū)間就是函數(shù)零點所在的區(qū)間.【題目詳解】函數(shù)定義域為,,,,,因為,根據(jù)零點定理可得,在有零點,故選B.【題目點撥】本題考查函數(shù)零點的判定定理,本題解題的關(guān)鍵是看出函數(shù)在所給的區(qū)間上對應(yīng)的函數(shù)值的符號,此題是一道基礎(chǔ)題.3、C【解題分析】,根據(jù)結(jié)合基本不等式即可得出答案.【題目詳解】解:,因為,又,所以,則,當(dāng)且僅當(dāng),即時,取等號,即的最小值是7.故選:C4、B【解題分析】應(yīng)用同角關(guān)系可求得,再由余弦二倍角公式計算.【題目詳解】因,所以,所以,所以.故選:B.【題目點撥】本題考查同角間的三角函數(shù)關(guān)系,考查余弦的二倍角公式.求值時要注意角的取值范圍,以確定函數(shù)值的正負(fù).5、A【解題分析】根據(jù)函數(shù)的周期性以及奇偶性,結(jié)合已知函數(shù)解析式,代值計算即可.【題目詳解】因為函數(shù)滿足:,且,故是上周期為的偶函數(shù),故,又當(dāng)時,,則,故.故選:A.6、D【解題分析】,,故選D.考點:點線面的位置關(guān)系.7、B【解題分析】利用輔助角公式可得,根據(jù)正弦型函數(shù)最值、單調(diào)性、對稱性和最小正周期的求法依次判斷各個選項即可.【題目詳解】;對于A,,A錯誤;對于B,當(dāng)時,,由正弦函數(shù)在上單調(diào)遞增可知:在上單調(diào)遞增,B正確;對于C,當(dāng)時,,則關(guān)于成軸對稱,C錯誤;對于D,最小正周期,D錯誤.故選:B.8、C【解題分析】根據(jù)各選項對于的集合的代表元素,一一判斷即可;【題目詳解】解:集合,表示含有兩個元素、的集合,對于A:,表示含有一個點的集合,故不相等;對于B:,表示的是點集,故不相等;對于C:,表示方程的解集,因為的解為,或,所以對于D:,故不相等故選:C9、D【解題分析】選項A中,函數(shù)為奇函數(shù),但無最小值,故滿足題意選項B中,函數(shù)為偶函數(shù),不合題意選項C中,函數(shù)為奇函數(shù),但無最小值,故不合題意選項D中,函數(shù),為奇函數(shù),且有最小值,符合題意選D10、B【解題分析】根據(jù)零點存在性定理,計算出區(qū)間端點的函數(shù)值即可判斷;【題目詳解】解:因為,在上是連續(xù)函數(shù),且,即在上單調(diào)遞增,,,,所以在上存在一個零點.故選:.【題目點撥】本題考查函數(shù)的零點的范圍,注意運用零點存在定理,考查運算能力,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、10【解題分析】借助三角函數(shù)模型,設(shè),以軸心為原點,與地面平行的直線為軸,建立直角坐標(biāo)系,由題意求出解析式,再令,解三角不等式即可得答案.【題目詳解】解:如圖,設(shè)座艙距離地面最近的位置為點,以軸心為原點,與地面平行的直線為軸,建立直角坐標(biāo)系.設(shè)時,南鳶同學(xué)位于點,以為終邊的角為,根據(jù)摩天輪轉(zhuǎn)一周大約需要,可知座艙轉(zhuǎn)動的角速度約為,由題意,可得,,令,,可得,所以南鳶同學(xué)可以拍到最美景色的時間是分鐘,故答案為:10.12、【解題分析】由題意,,,只需求出即可.【題目詳解】由題意,,因為,所以,,所以.故答案為:【題目點撥】本題考查三角恒等變換中的給值求值問題,涉及到三角函數(shù)的定義及配角的方法,考查學(xué)生的運算求解能力,是一道中檔題.13、【解題分析】根據(jù)被開放式大于等于零和對數(shù)有意義,解對數(shù)不等式得到結(jié)果即可.【題目詳解】∵函數(shù)∴x>0且,∴∴函數(shù)的定義域為故答案為【題目點撥】本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目14、①.②.【解題分析】由已知求得正八面體的棱長為,進而求得,即知外接球的半徑,進而求得體積;若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離,證得平面,再利用相似可知,即可求得半徑.【題目詳解】如圖,記該八面體為,O為正方形的中心,則平面設(shè),則,解得.在正方形中,,則在直角中,知,即正八面體外接球的半徑為故該正八面體外接球的體積為.若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離.取的中點E,連接,,則,又,,平面過O作于H,又,,所以平面,又,,則,則該球半徑的最大值為.故答案為:,15、8【解題分析】由圖象平移變換和指數(shù)函數(shù)的性質(zhì)可得點A坐標(biāo),然后結(jié)合反函數(shù)的性質(zhì)列方程組可解.【題目詳解】函數(shù)的圖象可以由的圖象向右平移2各單位長度,再向上平移3個單位長度得到,故點A坐標(biāo)為,又的反函數(shù)過點,所以函數(shù)過點,所以,解得,所以.故答案為:816、【解題分析】根據(jù)兩角和的正弦公式即可求解.【題目詳解】由題意可知,因為,所以,所以,則故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)由題意利用任意角的三角函數(shù)的定義,求得sinα,cosα的值(2)由條件利用誘導(dǎo)公式,求得的值【題目詳解】解:(1)∵角α的頂點在坐標(biāo)原點,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點P(﹣3,4),故,.(2)由(1)得.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題18、(1)證明見解析;(2).【解題分析】(1)取AC的中點F,連接DF,CE,EF,證明AC⊥平面DEF即可.(2)以G為坐標(biāo)原點,建立空間直角坐標(biāo)系,利用向量的方法求解線面角.【小問1詳解】取AC的中點F,連接DF,CE,EF,則△DAC,△EAC均為等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE?平面DEF,∴DE⊥AC【小問2詳解】連接GA,GC,∵DG⊥平面ABC,而GA?平面ABC,GC?平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分線上,又EA=EC,∴E在AC的垂直平分線上,∴EG垂直平分AC,又F為AC的中點,∴E,F(xiàn),G共線∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G為坐標(biāo)原點,GM為x軸,GE為y軸,GD為z軸,建立如圖所示的空間直角坐標(biāo)系,則A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),設(shè)平面DAC的法向量為=(x,y,z),則,得,令z=1,得:,于是,.19、(1)(2)或.(3)【解題分析】(1)與作差,配方后即可得;(2)原方程化為,設(shè),可得,進而可得結(jié)果;(3)令,則,函數(shù)可化為,利用二次函數(shù)的性質(zhì)分情況討論,分別求出兩段函數(shù)的最小值,比較大小后可得各種情況下函數(shù),(是實數(shù))的最小值.試題解析:(1)因為,所以(2)由,得,令,則,故原方程可化為,解得,或(舍去),則,即,解得或,所以或(3)令,則,函數(shù)可化為①若,當(dāng)時,,對稱軸,此時;當(dāng)時,,對稱軸,此時,故,②若,當(dāng),,對稱軸,此時;當(dāng)時,,對稱軸,此時,故,③若,當(dāng)時,,對稱軸,此時;當(dāng)時,,對稱軸,此時,故,;④若,當(dāng)時,,對稱軸,此時;當(dāng)時,,對稱軸,此時,則時,,時,,故,⑤若,當(dāng)時,,對稱軸,此時;當(dāng)時,,對稱軸,此時,因為時,,故,綜述:【方法點睛】本題主要考查指數(shù)函數(shù)的性質(zhì)分段函數(shù)的解析式和性質(zhì)、分類討論思想及方程的根與系數(shù)的關(guān)系.屬于難題.分類討論思想解決高中數(shù)學(xué)問題的一種重要思想方法,是中學(xué)數(shù)學(xué)四種重要的數(shù)學(xué)思想之一,尤其在解決含參數(shù)問題發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是將題設(shè)條件研究透,這樣才能快速找準(zhǔn)突破點.充分利用分類討論思想方法能夠使問題條理清晰,進而順利解答,希望同學(xué)們能夠熟練掌握并應(yīng)用與解題當(dāng)中.20、(1)見解析(2)見解析【解題分析】(1)在單位圓中畫出角的正切線,觀察隨增大正切線的值得變化情況,再觀察時,正切線的值隨增大時的變化情況,發(fā)現(xiàn)正切函數(shù)在區(qū)間上單調(diào)遞增.(2)當(dāng)是銳角時,有,由此得到.解析:(1)當(dāng)時,增大時正切線的值越來越大;當(dāng)時,正切線與區(qū)間上的情況完全一樣;隨著角的終邊不停旋轉(zhuǎn),正切線不停重復(fù)出現(xiàn),故可得出正切函數(shù)在區(qū)間上單調(diào)遞增;由題意知正切函數(shù)的定義域關(guān)于原點對稱,在坐標(biāo)系中畫出角和,它們的終邊關(guān)于軸對稱,在單位圓中作出它們的正切線,可以發(fā)現(xiàn)它們的正切線長度相等,方向相反,即,得出正切函數(shù)為奇函數(shù).(2)如圖,當(dāng)為銳角時,在單位圓中作出它的正弦線,正切線,又因為,所以,又,而,故即.點睛:三角函數(shù)線是研究三角函數(shù)性質(zhì)(如定義域、值域、周期性、奇偶性等)的重要工具,它體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,是解三角不等式、三角方程等不可或缺的工具.21、(1)(2)(3)存在,【解題分析】(1)由條件求出,由此求出,利用單調(diào)性求其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)村征地合同協(xié)議書
- 2025農(nóng)村土地永久轉(zhuǎn)讓及生態(tài)保護合同全新制定
- 2025年度公司特色花卉組合采購服務(wù)協(xié)議3篇
- 二零二五年度地鐵車站清潔與安全服務(wù)合同3篇
- 二零二五年度物流運輸勞動合同勞務(wù)合同3篇
- 二零二五年度私人住宅泳池建造合同3篇
- 2025年度全款購車汽車用品贈送合同范本3篇
- 二零二五年度高校畢業(yè)生就業(yè)見習(xí)計劃合作協(xié)議3篇
- 2025年度環(huán)保設(shè)備銷售加盟合同協(xié)議
- 二零二五年度電力設(shè)施檢修與維修合同3篇
- 地下室頂板預(yù)留洞口施工方案標(biāo)準(zhǔn)版
- 2023-2024學(xué)年成都市武侯區(qū)六上數(shù)學(xué)期末達標(biāo)測試試題含答案
- 軍事思想論文范文(通用6篇)
- (完整版)EORTC生命質(zhì)量測定量表QLQ-C30(V3.0)
- 七年級體育與健康 《足球》單元作業(yè)設(shè)計
- 毛細(xì)管升高法測量液體表面張力系數(shù)
- 室內(nèi)覆蓋方案設(shè)計與典型場景
- 放射性粒子植入自我評估報告
- 2023年山西云時代技術(shù)有限公司招聘筆試題庫及答案解析
- 浙大中控DCS系統(tǒng)介紹(簡潔版)
- GB/T 16288-2008塑料制品的標(biāo)志
評論
0/150
提交評論