Chapter7 圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型_第1頁
Chapter7 圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型_第2頁
Chapter7 圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型_第3頁
Chapter7 圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型_第4頁
Chapter7 圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)據(jù)分析與可視化第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.1有向圖和多重圖7.2圖的聚集系數(shù)7.3社會網(wǎng)絡(luò)分析7.4可平面圖的檢驗7.5有向無環(huán)圖的檢驗7.6最大流7.7隨機塊模型第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型2《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.1.1存儲圖數(shù)據(jù)7.1.2圖形展示7.1有向圖和多重圖3《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型連通圖(ConnectedGraph),節(jié)點(Node)(也可叫做一個頂點(Vertex)),連通路徑為一條邊(Edge)。如果只有單向連接,那么它就是有向圖(DirectedGraph)7.1有向圖和多重圖4《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.1.1存儲圖數(shù)據(jù)圖數(shù)據(jù)通常為鄰接矩陣,除非它是稀疏的。假設(shè)圖有V個節(jié)點,鄰接矩陣是有V行的矩陣。7.1有向圖和多重圖5《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型

ABCDEFA02526---B-085510-C26850--10D---0-11E---9088F---11880

芝加哥波士頓紐約華盛頓邁阿密達拉斯芝加哥01613-1145--波士頓16130338725--紐約-33803832145-華盛頓1145725383017092113邁阿密--2145170902161達拉斯---211321610鄰接矩陣1鄰接矩陣2importscipy.sparseassparsematrixA=sparse.lil_matrix((6,6))matrixA=sparse.lil_matrix([[0,25,26,0,0,0],[0,0,85,5,10,0],[26,85,0,0,0,10],[0,0,0,0,0,11],[0,0,0,9,0,88],[0,0,0,11,88,0]])print(matrixA)(0,1)25(0,2)26(1,2)85(1,3)5(1,4)10(2,0)26(2,1)85(2,5)10(3,5)11(4,3)9(4,5)88(5,3)11(5,4)887.1有向圖和多重圖6《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.1.2圖形展示igragh:提供多種格式,如GraphML、GML、LGL和NCOL僅完全支持DL文件格式優(yōu)點:便捷方式來配置和展示圖并將它們以SVG(ScalableVectorGraphics,可縮放圖形陣列)格式存儲,以便它們可以嵌入HTML文件7.1有向圖和多重圖7《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型使用igraph繪制星形圖7.1有向圖和多重圖8《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型fromigraphimport*vertices=["A","B","C","D","E","F","G","H","I","J"]edges=[(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,1),(1,8),(8,2),(2,4),(4,9),(9,5),(5,7),(7,0)]graphStyle={'vertex_size':20}g=Graph(vertex_attrs={"label":vertices},edges=edges,directed=True)g.write_svg("simple_star.svg",width=500,height=300,**graphStyle)7.1有向圖和多重圖9《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型使用igraph繪制無向圖7.1有向圖和多重圖10《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型fromigraphimportreadg=read("./data/",format="pajek")g.vs["color"]="#3d679d"g.es["color"]="red"graphStyle={'vertex_size':12,'margin':6}#graphStyle["layout"]=g.layout("fr")#optionalg.write_svg("ragusa_graph.svg",width=600,height=600,**graphStyle)7.1有向圖和多重圖11《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型#設(shè)置圓形布局graphStyle["layout"]=g.layout("circle")7.1.2圖形展示NetworkX:用于網(wǎng)絡(luò)和圖形分析的庫找源節(jié)點到目的節(jié)點的最短路徑找度分布以繪制與交匯點相似的節(jié)點找圖的聚集系數(shù)7.1有向圖和多重圖12《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型使用NetworkX配置有向圖權(quán)重7.1有向圖和多重圖13《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型importmatplotlib.pyplotaspltimportpylabfrompylabimportrcParamsimportnetworkxasnximportnumpyasnp#設(shè)置圖形顯示尺寸為10英寸×10英寸(1英寸=2.54厘米)rcParams['figure.figsize']=10,10G=nx.DiGraph()#添加邊和權(quán)重G.add_edges_from([('K','I'),('R','T'),('V','T')],weight=3)G.add_edges_from([('T','K'),('T','H'),('I','T'),('T','H')],weight=4)G.add_edges_from([('I','R'),('H','N')],weight=5)G.add_edges_from([('R','N')],weight=6)7.1有向圖和多重圖14《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型#用這些值來決定節(jié)點的顏色val_map={'K':1.5,'I':0.9,'R':0.6,'T':0.2}values=[val_map.get(node,1.0)fornodeinG.nodes()]edge_labels=dict([((u,v,),d['weight'])foru,v,dinG.edges(data=True)])#設(shè)置邊的顏色red_edges=[('R','T'),('T','K')]edge_colors=['green'ifnotedgeinred_edgeselse'red'foredgeinG.edges()]pos=nx.spring_layout(G)nx.draw_networkx_edges(G,pos,width=2.0,alpha=0.65)nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)nx.draw(G,pos,node_color=values,node_size=1500,edge_color=edge_colors,edge_cmap=plt.cm.Reds)pylab.show()7.1有向圖和多重圖15《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型蛋白質(zhì)相互作用序列空間圖7.1有向圖和多重圖16《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型

7.2圖的聚集系數(shù)17《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型

importnetworkxasnxfrompylabimportrcParamsrcParams['figure.figsize']=12,12G=nx.read_gml('./data/lesmiserables.gml')G8=G.copy()dn=nx.degree(G8)forninlist(G8.nodes()):ifdn[n]<=8:G8.remove_node(n)pos=nx.spring_layout(G8)nx.draw(G8,node_size=10,edge_color='b',alpha=0.45,font_size=9,pos=pos)labels=nx.draw_networkx_labels(G8,pos=pos)18《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)defvaluegetter(*values):iflen(values)==1:item=values[0]defg(obj):returnobj[item]else:defg(obj):returntuple(obj[item]foriteminvalues)returng19《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)defclustering_coefficient(G,vertex):neighbors=G[vertex].keys()iflen(neighbors)==1:return-1.0links=0fornodeinneighbors:foruinneighbors:ifuinG[node]:links+=1ccoeff=2.0*links/(len(neighbors)*(len(neighbors)-1))returnlinks,len(neighbors),ccoeff20《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)defcalculate_centrality(G):degc=nx.degree_centrality(G)nx.set_node_attributes(G,degc,'degree_cent')degc_sorted=sorted(degc.items(),key=valuegetter(1),reverse=True)forkey,valueindegc_sorted[0:10]:print("DegreeCentrality:",key,value)returnG,degcprint("Valjean",clustering_coefficient(G8,"Valjean"))print("Marius",clustering_coefficient(G8,"Marius"))print("Gavroche",clustering_coefficient(G8,"Gavroche"))print("Babet",clustering_coefficient(G8,"Babet"))print("Eponine",clustering_coefficient(G8,"Eponine"))print("Courfeyrac",clustering_coefficient(G8,"Courfeyrac"))print("Comeferre",clustering_coefficient(G8,"Combeferre"))calculate_centrality(G8)21《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)#輸出的文本結(jié)果Valjean(82,14,0.9010989010989011)Marius(94,14,1.032967032967033)Gavroche(142,17,1.0441176470588236)Babet(60,9,1.6666666666666667)Eponine(36,9,1.0)Courfeyrac(106,12,1.606060606060606)Comeferre(102,11,1.8545454545454545)DegreeCentrality:Gavroche0.708333333333DegreeCentrality:Valjean0.583333333333DegreeCentrality:Enjolras0.583333333333DegreeCentrality:Marius0.583333333333DegreeCentrality:Courfeyrac0.5DegreeCentrality:Bossuet0.5DegreeCentrality:Thenardier0.5DegreeCentrality:Joly0.458333333333DegreeCentrality:Javert0.458333333333DegreeCentrality:Feuilly0.45833333333322《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)#繪制的網(wǎng)格圖23《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.2圖的聚集系數(shù)《悲慘世界》人物關(guān)系圖

此時Comeferre恰好具有最大的聚集系數(shù)24《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.3社交網(wǎng)絡(luò)分析訪問流程:身份驗證→獲取確認鏈接例:訪問Twitter數(shù)據(jù)使用python-twitter,獲取、匯總數(shù)據(jù)存儲在cPickle中25《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.3社交網(wǎng)絡(luò)分析importcPickleimportos#使用方法#$設(shè)置CONSUMER_KEY,CONSUMER_SECRET,ACCESS_TOKEN_KEYS,ACCESS_TOKEN_SECRET#作為環(huán)境變量#$pythonget_data.py#downloadsfriendandfollowerdatato./data#在運行時看到的錯誤#raiseURLError(err)#urllib2.URLError:<urlopenerror[Errno104]Connectionresetbypeer>DATA_DIR="data"#好友/關(guān)注者數(shù)據(jù)的存儲目錄#我們要分析的網(wǎng)名列表screen_names=['KirthiRaman','Lebron']26《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.3社交網(wǎng)絡(luò)分析defget_filenames(screen_name): """Buildthefriendsandfollowersfilenames""" returnos.path.join(DATA_DIR,"%s.friends.pickle"%(screen_name)),os.path.join(DATA_DIR,"%s.followers.pickle"%(screen_name))if__name__=="__main__": #登錄賬戶

t=twitter.Api(consumer_key='k7atkBNgoGrioMS...',consumer_secret='eBOx1ikHMkFc...', access_token_key='8959...', access_token_secret='O7it0...');printt.VerifyCredentials()

27《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.3社交網(wǎng)絡(luò)分析forscreen_nameinscreen_names:fr_filename,fo_filename=get_filenames(screen_name) print"Checkingfor:",fr_filename,fo_filename ifnotos.path.exists(fr_filename): print"Gettingfriendsfor",screen_name fr=t.GetFriends(screen_name=screen_name) cPickle.dump(fr,open(fr_filename,"w"),protocol=2) ifnotos.path.exists(fo_filename): print"Gettingfollowersfor",screen_name fo=t.GetFollowers(screen_name=screen_name) cPickle.dump(fo,open(fo_filename,"w"),protocol=2)

pythonget_data.pypythonsummarise_data.pypythondraw_network.py28《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.3社交網(wǎng)絡(luò)分析運行結(jié)果如圖:圖Twitter網(wǎng)絡(luò)中粉絲信息29《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.4可平面圖的檢驗定義:可以在沒有任何相交的邊的平面上繪制的圖繪制時必須從一個節(jié)點開始,從一條邊繪制到另一條邊,并在繼續(xù)繪制時跟蹤這些面可平面圖示例30《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.4可平面圖的檢驗

圖可平面圖示例31《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.4可平面圖的檢驗importplanarityimportnetworkxasnx#8個節(jié)點的完整圖,G8G8=plete_graph(8)#G8不是可平面圖print(planarity.is_planar(G8))#將顯示錯誤,因為G8不是可平面圖K=planarity.kuratowski_subgraph(G8)#將顯示邊print(K.edges())#將顯示圖nx.draw(G8)False[(0,4),(0,5),(0,7),(2,4),(2,5),(2,7),(3,5),(3,6),(3,7),(4,6)]32《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.4可平面圖的檢驗完全圖該示例說明下圖包含8個節(jié)點的完全圖不是可平面圖33《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.5有向無環(huán)圖的檢驗有向無環(huán)圖(DirectedAcyclicGraph,DAG)定義:從給定節(jié)點A到B的邊將指向特定方向(A→B或B→A)并且是無環(huán)的,同時,它們不會循環(huán)例:字典樹34《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.5有向無環(huán)圖的檢驗importmatplotlib.pyplotaspltimportpylabfrompylabimportrcParamsimportnetworkxasnximportnumpyasnp#設(shè)置圖形顯示尺寸為10×10英寸rcParams['figure.figsize']=10,10G=nx.DiGraph()#添加邊和權(quán)重G.add_edges_from([('K','I'),('R','T'),('V','T')],weight=3)G.add_edges_from([('T','K'),('T','H'),('T','H')],weight=4)#用這些值來決定節(jié)點的顏色val_map={'K':1.5,'I':0.9,'R':0.6,'T':0.2}values=[val_map.get(node,1.0)fornodeinG.nodes()]35《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.5有向無環(huán)圖的檢驗edge_labels=dict([((u,v,),d['weight'])foru,v,dinG.edges(data=True)])#設(shè)置邊顏色red_edges=[('R','T'),('T','K')]edge_colors=['green'ifnotedgeinred_edgeselse'red'foredgeinG.edges()]pos=nx.spring_layout(G)nx.draw_networkx_edges(G,pos,width=2.0,alpha=0.65)nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)nx.draw(G,pos,node_color=values,node_size=1500,edge_color=edge_colors,edge_cmap=plt.cm.Reds)pylab.show()nx.is_directed_acyclic_graph(G)True36《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.5有向無環(huán)圖的檢驗該示例中的有向無環(huán)圖:有向無環(huán)圖37《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.6最大流定義:流向圖是從源到目的地的有向圖,其容量沿每條邊分配邊應(yīng)當有容量,表明該邊最多可以支持多少流量。如果該容量不存在,則假定它具有無限容量流向圖示例38《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.6最大流代碼示例:importnetworkxasnxG=nx.DiGraph()G.add_edge('p','y',capacity=5.0)G.add_edge('p','s',capacity=4.0)G.add_edge('y','t',capacity=3.0)G.add_edge('s','h',capacity=5.0)G.add_edge('s','o',capacity=4.0)flow_value=nx.maximum_flow_value(G,'p','o')print("Flowvalue",flow_value)nx.draw(G,node_color='#a0cbe2')Flowvalue4.0使用NetworkX包中maximum_flow_value(Graph,from,to)39《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.6最大流流向圖40《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.7隨機塊模型簡單定義:以標量n為特征。這表示組的數(shù)量或集群的數(shù)量,以及顯示節(jié)點和其連接的矩陣PyMC包:提供馬爾可夫鏈蒙特卡羅(MarkovChainMonteCarlo,MCMC)和3個概率模型構(gòu)建塊的包StochPy包:可用于隨機建模41《數(shù)據(jù)分析與可視化》第七章圖結(jié)構(gòu)數(shù)據(jù)和網(wǎng)絡(luò)模型7.7隨機塊模型importpymcasmcfrompylabimportrcParams#

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論