


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一種GEO軌道導(dǎo)航衛(wèi)星位置保持期間自主導(dǎo)航方法
Abstract:
ThispaperpresentsanautonomousnavigationmethodforGEOorbitnavigationsatelliteduringposition-keeping.Themethodutilizesthemeasurementsfrommultiplesensorstoestimatethesatellite’spositionandvelocity,andutilizessensorfusiontechniquestoimprovetheaccuracyofthepositionandvelocityestimates.ToreducethecomputationburdenoftheKalmanfilter,anadaptivefilteringapproachisproposed.Thesimulationresultsshowthattheproposedmethodcanachievehighnavigationaccuracyandrobustnessduringposition-keeping.
Introduction:
Asthedemandforsatellite-basednavigationservicescontinuestogrow,itbecomesincreasinglyimportanttomaintaintheaccuracyandreliabilityofsatellitenavigationsystems.InthecaseofGEOorbitnavigationsatellites,theposition-keepingtaskiscrucialformaintainingthestabilityandcontinuityofthesatellitenavigationsystem.
Duringtheposition-keepingtask,thenavigationsatelliteneedstomaintainitspositionwithrespecttoaparticularpointontheearthsurface.Thetraditionalmethodusesthegroundcontrolsystemtoadjustthesatellite'sattitudeandorbittomaintainitsposition.However,thismethodrequiresconstantcommunicationbetweenthesatelliteandthegroundstation,whichcanleadtocommunicationlagandlatencyissuesincertainsituations.
Inrecentyears,researchinteresthasshiftedtowardsdevelopinganautonomousnavigationmethodforposition-keepingofGEOorbitnavigationsatellites.Theautonomousnavigationmethodusesonboardsensorstoestimatethesatellite'spositionandvelocity,andcontrolthesatellite'sattitudeandorbittomaintainitsposition.
Inthispaper,weproposeanautonomousnavigationmethodforGEOorbitnavigationsatelliteposition-keeping.Theproposedmethodutilizesthemeasurementsfrommultiplesensorstoestimatethesatellite'spositionandvelocity,andutilizessensorfusiontechniquestoimprovetheaccuracyofthepositionandvelocityestimates.ToreducethecomputationburdenoftheKalmanfilter,anadaptivefilteringapproachisproposed.
Methodology:
SensorConfiguration:
ThesensorconfigurationforautonomousnavigationofGEOorbitnavigationsatelliteposition-keepingincludesaGNSSreceiver,aninertialmeasurementunit(IMU),andastarsensor.TheGNSSreceiverprovidesthepositionandvelocityinformation,theIMUprovidestheattitudeandangularrateinformation,andthestarsensorprovidestheattitudeinformation.
EstimationAlgorithm:
Thenavigationstateofthesatellitecanberepresentedasx=[r,v,q],whereristhepositionvector,visthevelocityvector,andqisthequaternionrepresentingtheattitudeofthesatellite.Themeasurementvectorcanberepresentedasz=[zGNSS,zIMU,zstar],wherezGNSSistheGNSSmeasurement,zIMUistheIMUmeasurement,andzstaristhestarsensormeasurement.
ThenavigationstateestimationisperformedusingaKalmanfilter.ThemeasurementmodelandstatetransitionmodelfortheKalmanfilteraregivenby:
z=Hx+v
x(k)=Fx(k-1)+w(k-1)
whereHisthemeasurementmatrix,Fisthestatetransitionmatrix,vandwarethemeasurementnoiseandprocessnoiserespectively.
Toimprovetheaccuracyofthepositionandvelocityestimation,sensorfusiontechniquesareemployed.ThesensorfusionalgorithmusesacomplementaryfiltertocombinetheGNSSandIMUdata,andanextendedKalmanfiltertofusethestarsensordatawiththeGNSS/IMUdata.
AdaptiveFiltering:
ThecomputationburdenoftheKalmanfilterincreasesasthenumberofmeasurementsandsensornoiseincrease.Toreducethecomputationburden,anadaptivefilteringapproachisproposed.Theadaptivefilterselectsthemeasurementswithhighinformationcontentanddiscardsthemeasurementswithlowinformationcontent.
Theadaptivefilterusestheinformationgainmetrictoevaluatetheinformationcontentofameasurement.Theinformationgainmetricisdefinedas:
g(t)=det(P(t|t-1))/det(P(t|t))
whereP(t|t-1)istheaprioriestimatecovariancematrixandP(t|t)istheaposterioriestimatecovariancematrix.
TheadaptivefilterdiscardsthemeasurementswithlowinformationgainandselectsthemeasurementswithhighinformationgainforprocessingbytheKalmanfilter.
SimulationResults:
TheproposedautonomousnavigationmethodwassimulatedusingtheMatlab/Simulinksimulationenvironment.Thesimulationresultsshowedthattheproposedmethodcanachievehighnavigationaccuracyandrobustnessduringposition-keeping.
Conclusion:
Inthispaper,anautonomousnavigationmethodforGEOorbitnavigationsatelliteposition-keepingwasproposed.Themethodutilizesthemeasurementsfrommultiplesensorstoestimatethesatellite'spositionandvelocity,andutilizessensorfusiontechniquestoimprovetheaccuracyofthepositionandvelocityestimates.ToreducethecomputationburdenoftheKalmanfilter,anadaptivefilteringapproachisproposed.Thesimulationre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 應(yīng)試策略:保安證試題及答案
- 達(dá)州市大竹縣2025屆三下數(shù)學(xué)期末聯(lián)考模擬試題含解析
- 中國美術(shù)學(xué)院《Labview》2023-2024學(xué)年第二學(xué)期期末試卷
- 中國人民警察大學(xué)《高等隧道工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西省上饒市“山江湖”協(xié)作體統(tǒng)招班2025年高三下學(xué)期第三次月考試卷生物試題試卷含解析
- 迎接挑戰(zhàn)保安證考試試題及答案
- 大連工業(yè)大學(xué)藝術(shù)與信息工程學(xué)院《中華才藝專題一》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安職業(yè)技術(shù)學(xué)院《硬筆書法》2023-2024學(xué)年第二學(xué)期期末試卷
- 商洛職業(yè)技術(shù)學(xué)院《景觀生態(tài)規(guī)劃》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025屆湖北省七市教科研協(xié)作體高三年級第二學(xué)期2月周測試英語試題卷含解析
- 原生廣告行業(yè)可行性分析報告
- 新聞記者職業(yè)資格《新聞基礎(chǔ)知識》考試題庫(含答案)
- 《鐵路軌道維護(hù)》課件-道岔改道作業(yè)
- 幼兒園教職員工健康監(jiān)測方案
- 湘教版地理八年級下冊 期末綜合測試卷(二)(含答案)
- 五育并舉 - 以愛育心以德化人
- 2024年上海市安全員B證(項目負(fù)責(zé)人)考試試題題庫
- 2022年遼寧省公務(wù)員錄用考試《行測》真題及答案解析
- 汽車檢測技術(shù)課件 任務(wù)二 檢測汽車動力性能
- 茶馬古道歷史簡介
- 地測防治水技能競賽理論考試題庫(含答案)
評論
0/150
提交評論