抑制共模電感_第1頁
抑制共模電感_第2頁
抑制共模電感_第3頁
抑制共模電感_第4頁
抑制共模電感_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

共模電感求助編輯百科名片\o"查看圖片"

共模電感共模電感(CommonmodeChoke),也叫共模扼流圈,慣用于電腦的開關(guān)電源中過濾共模的電磁干擾信號。在板卡設(shè)計中,共模電感也是起EMI濾波的作用,用于克制高速信號線產(chǎn)生的電磁波向外輻射發(fā)射。目錄初識共模電感共模電感工作原理漏感和差模電感共模電感使用材料的優(yōu)劣勢從看板卡整體設(shè)計看共模電感概述主板Layout(布線)設(shè)計主板布線的劃斷主板接口的設(shè)計從必要性看共模電感共模電感的測量與診療概述漏感的重要性共模扼流圈綜述用LISN原理測量共模扼流圈飽和特性的辦法用電流原理測量共模扼流圈飽和特性的辦法共模扼流圈內(nèi)存在的差模與共模磁通參考下列圍繞麥克斯韋方程所進(jìn)行的討論漏感綜述無輻射共模扼流圈構(gòu)造壺形鐵芯構(gòu)造E形鐵芯構(gòu)造共模濾波器JEPSUN-CM系列展開初識共模電感共模電感工作原理漏感和差模電感共模電感使用材料的優(yōu)劣勢從看板卡整體設(shè)計看共模電感概述主板Layout(布線)設(shè)計主板布線的劃斷主板接口的設(shè)計從必要性看共模電感共模電感的測量與診療概述漏感的重要性共模扼流圈綜述用LISN原理測量共模扼流圈飽和特性的辦法用電流原理測量共模扼流圈飽和特性的辦法共模扼流圈內(nèi)存在的差模與共模磁通參考下列圍繞麥克斯韋方程所進(jìn)行的討論漏感綜述無輻射共模扼流圈構(gòu)造壺形鐵芯構(gòu)造E形鐵芯構(gòu)造共模濾波器JEPSUN-CM系列展開編輯本段初識共模電感共模電感的一種小知識:EMI(ElectroMagneticInterference,電磁干擾)計算機內(nèi)部的主板上混合了多個高頻電路、數(shù)字電路和模擬電路,它們工作時會產(chǎn)生大量高頻電磁波互相干擾,這就是EMI。EMI還會通過主板布線或外接線纜向外發(fā)射,造成電磁輻射污染,不僅影響其它的電子設(shè)備正常工作,還對人體有害。PC板卡上的芯片在工作過程中既是一種電磁干擾對象,也是一種電磁干擾源??偟膩碚f,我們能夠把這些電磁干擾分成兩類:串模干擾(差模干擾)與共模干擾(接地干擾)。以主板上的兩條PCB走線(連接主板各元件的導(dǎo)線)為例,所謂串模干擾,指的是兩條走線之間的干擾;而共模干擾則是兩條走線和PCB地線之間的電位差引發(fā)的干擾。串模干擾電流作用于兩條信號線間,其傳導(dǎo)方向與波形和信號電流一致;共模干擾電流作用在信號線路和地線之間,干擾電流在兩條信號線上各流過二分之一且同向,并以地線為公共回路。共模電感如果板卡產(chǎn)生的共模電流不通過衰減過濾(特別是像USB和IEEE1394接口這種高速接口走線上的共模電流),那么共模干擾電流就很容易通過接口數(shù)據(jù)線產(chǎn)生電磁輻射——在線纜中因共模電流而產(chǎn)生的共模輻射。美國FCC、國際無線電干擾特別委員會的CISPR22以及我國的GB9254等原則規(guī)范等都對信息技術(shù)設(shè)備通信端口的共模傳導(dǎo)干擾和輻射發(fā)射有有關(guān)的限制規(guī)定。為了消除信號線上輸入的干擾信號及感應(yīng)的多個干擾,我們必須合理安排濾波電路來過濾共模和串模的干擾,共模電感就是濾波電路中的一種構(gòu)成部分。共模電感實質(zhì)上是一種雙向濾波器:首先要濾除信號線上共模電磁干擾,另首先又要克制本身不向外發(fā)出電磁干擾,避免影響同一電磁環(huán)境下其它電子設(shè)備的正常工作。圖2是我們常見的共模電感的內(nèi)部電路示意圖,在實際電路設(shè)計中,還能夠采用多級共模電路來更加好地濾除電磁干擾。另外,在主板上我們也能看到一種貼片式的共模電感(圖3),其構(gòu)造和功效與直立式共模電感幾乎是同樣的。編輯本段共模電感工作原理為什么共模電感能防EMI?要搞清晰這點,我們需要從共模電感的構(gòu)造開始分析。共模電感的濾波電路,La和Lb就是共模電感線圈。這兩個線圈繞在同一鐵芯上,匝數(shù)和相位都相似(繞制反向)。這樣,當(dāng)電路中的正常電流流經(jīng)共模電感時,電流在同相位繞制的電感線圈中產(chǎn)生反向的磁場而互相抵消,此時正常信號電流重要受線圈電阻的影響(和少量因漏感造成的阻尼);當(dāng)有共模電圖2圖3流流經(jīng)線圈時,由于共模電流的同向性,會在線圈內(nèi)產(chǎn)生同向的磁場而增大線圈的感抗,使線圈體現(xiàn)為高阻抗,產(chǎn)生較強的阻尼效果,以此衰減共模電流,達(dá)成濾波的目的。事實上,將這個濾波電路一端接干擾源,另一端接被干擾設(shè)備,則La和C1,Lb和C2就構(gòu)成兩組低通濾波器,能夠使線路上的共模EMI信號被控制在很低的電平上。該電路既能夠克制外部的EMI信號傳入,又能夠衰減線路本身工作時產(chǎn)生的EMI信號,能有效地減少EMI干擾強度?,F(xiàn)在國內(nèi)生產(chǎn)的一種小型共模電感,采用高頻之雜訊克制對策,共模扼流線圈構(gòu)造,訊號不衰減,體積小、使用方便,含有平衡度佳、使用方便、高品質(zhì)等優(yōu)點。廣泛使用在雙平衡調(diào)音裝置、多頻變壓器、阻抗變壓器、平衡及不平衡轉(zhuǎn)換變壓器...等。尚有一種共模濾波器電感/EMI濾波器電感采用鐵氧體磁心,雙線并繞,雜訊克制對策佳,高共模噪音克制和低差模噪聲信號克制,低差模噪聲信號克制干擾源,在高速信號中難以變形,體積小、含有平衡度佳、使用方便、高品質(zhì)等優(yōu)點。廣泛使用在克制電子設(shè)備EMI噪音、個人電腦及外圍設(shè)備的USB線路、DVC、STB的IEEE1394線路、液晶顯示面板、低壓微分信號...等。編輯本段漏感和差模電感對抱負(fù)的電感模型而言,當(dāng)線圈繞完后,全部磁通都集中在線圈的中心內(nèi)。但普通狀況下環(huán)形線圈不會繞滿一周,或繞制不緊密,這樣會引發(fā)磁通的泄漏。共模電感有兩個繞組,其間有相稱共模電感大的間隙,這樣就會產(chǎn)生磁通泄漏,并形成差模電感。因此,共模電感普通也含有一定的差模干擾衰減能力。在濾波器的設(shè)計中,我們也能夠運用漏感。如在普通的濾波器中,僅安裝一種共模電感,運用共模電感的漏感產(chǎn)生適量的差模電感,起到對差模電流的克制作用。有時,還要人為增加共模扼流圈的漏電感,提高差模電感量,以達(dá)成更加好的濾波效果。編輯本段共模電感使用材料的優(yōu)劣勢磁環(huán)類型的鐵芯優(yōu)點:高初始導(dǎo)磁率(這個是共模電感的基本規(guī)定)、高飽和磁感應(yīng)強度、溫度較之鐵氧體穩(wěn)定(能夠理解為溫升小),頻率特性比較靈活,由于導(dǎo)磁率高,很小就能夠做出很大的感量,適應(yīng)頻率比較寬;整體優(yōu)勢:由于初始導(dǎo)磁率是鐵氧體的5-20倍,對傳導(dǎo)干擾的克制作用遠(yuǎn)不不大于鐵氧體;納米晶的高飽和磁感應(yīng)強度比鐵氧體的好,因此在大電流下不易飽和;溫升較之UF系列的要低,我實際測試:室溫下要低將近10度(個人測試值僅作參考);構(gòu)造上的靈活令其適應(yīng)性好,從加工工藝上進(jìn)行變化,即可適應(yīng)不同需求(見過節(jié)能燈上用的磁環(huán)電感,使用相稱靈活);分布電容會更小,由于繞線的面積更寬,體積也相對較小;環(huán)行所用匝數(shù)少一點,分布參數(shù)小一點,效率占優(yōu)(針對具體進(jìn)行分析,我猜是由于線徑的緣故,望補充);整體劣勢:磁環(huán)孔徑小,機器難以穿線,需要人工去繞,費時費力,加工成本高,效率低。而在成本壓力日益增加的同時,這一點已尤為重要了。耐壓方面較之UF優(yōu)勢不大:我自己想的,由于看到諸多磁環(huán)共模中間使用扎線帶隔開的,這樣不是很可靠,有的中間拉開一定距離,線用點膠固定,時間長了,可靠性怎么樣呢?如果電感量規(guī)定比較大,線會擠在一起,安全性上有一點疑惑。安裝不便,故障率較高---來自發(fā)熱友的分享:“普通性能是同樣的,同樣線徑磁環(huán)要比UF10.5做的感量要高,容易實現(xiàn)。測試傳導(dǎo)時相似感量有碰到UF10.5比較好,相差5個DB左右!磁環(huán)要是像年紀(jì)圖片是比較便宜,但不好插件,故障比較大。要是加了底座也不便宜,比UF10.5貴”應(yīng)用:由于成本的因素,磁環(huán)大多用在大功率的電源上,發(fā)熱友形容:“小功率的用磁環(huán)太高檔了”,是有道理的。固然由于體積小,對體積有規(guī)定的小功率電源,采用磁環(huán)的也是很OK的選擇。綜合性能比起來,優(yōu)于UF系的。如果成本壓力不大的項目,能夠考慮用磁環(huán)的。我實際測試傳到,用磁環(huán)的余量要低更多。并且感量還比UF的小。再說說UF/UU系列的共模材料:基本上為鐵氧體,固然這鐵氧體也有區(qū)別的,普通有MXO-錳鋅類和NXO-鎳鋅類。鎳鋅類的重要優(yōu)點是:初始磁導(dǎo)率低(不大于1000u),但是能夠工作在比較高的頻率(不不大于100MHZ)下,保持磁導(dǎo)率不變。很強很偉大。NXO比MXO電阻率高。運用鐵氧體對高頻雜波的類似阻尼的作用將高頻雜波以熱能的方式釋放出來,這就解釋了共模電感的溫度問題。百度上對共模電感的原理說的比我清晰:兩個線圈繞在同一鐵芯上,匝數(shù)和相位都相似(繞制反向)。這樣,當(dāng)電路中的正常電流流經(jīng)共模電感時,電流在同相位繞制的電感線圈中產(chǎn)生反向的磁場而互相抵消,此時正常信號電流重要受線圈電阻的影響(和少量因漏感造成的阻尼);當(dāng)線圈中流過有共模干擾的電流時,會在線圈內(nèi)產(chǎn)生同向的磁場而增大線圈的感抗,使線圈體現(xiàn)為高阻抗,產(chǎn)生較強的阻尼效果,以此衰減共模電流,達(dá)成濾波的目的。整體優(yōu)勢:最重要的一點:成本低(我用的這個是0.9元人民幣),能夠用機器繞、高效,慣用UU9.8或UU10.5;有骨架,繞制工藝應(yīng)當(dāng)會更加好控制,能夠做更高的電感量;耐壓及可靠性要好?針對磁環(huán)共模的;好插件,好安裝。四個腳嘛,孔位對了就沒一點問題;基本用在小電流的電源上,由于線徑不能夠用很粗的,故電流不能太大;整體劣勢:空間因素:封裝位置大,maybe是由于比較強健,不像磁環(huán)那么小巧玲瓏;發(fā)熱比較嚴(yán)重,也是根據(jù)我實測的:90V輸入滿載室溫下,能夠到快90度;應(yīng)用:普通用在成本控制比較嚴(yán)格的、抑或小功率的場合;[1]編輯本段從看板卡整體設(shè)計看共模電感概述在某些主板上,我們能看到共模電感,但是在大多數(shù)主板上,我們都會發(fā)現(xiàn)省略了該元件,甚至有的連位置也沒有預(yù)留。這樣的主板,合格嗎?不可否認(rèn),共模電感對主板高速接口的共模干擾有較好的克制作用,能有效避免EMI通過線纜形成電磁輻射影響其它外設(shè)的正常工作和我們的身體健康。但同時也需要指出,板卡的防E共模電感MI設(shè)計是一種相稱龐大和系統(tǒng)化的工程,采用共模電感的設(shè)計只是其中的一種小部分。高速接口處有共模電感設(shè)計的板卡,不見得整體防EMI設(shè)計就優(yōu)秀。因此,從共模濾波電路我們只能看到板卡設(shè)計的一種方面,這一點容易被大家無視,犯下見木不見林的錯誤。只有理解了板卡整體的防EMI設(shè)計,我們才能夠評價板卡的優(yōu)劣。那么,優(yōu)秀的板卡設(shè)計在防EMI性能上普通都會做哪些工作呢?主板Layout(布線)設(shè)計對優(yōu)秀的主板布線設(shè)計而言,時鐘走線大多會采用屏蔽方法或者靠近地線以減少EMI。對多層PCB設(shè)計,在相鄰的PCB走線層會采用開環(huán)原則,導(dǎo)線從一層到另一層,在設(shè)計上就會避免導(dǎo)線形成環(huán)狀。如果走線構(gòu)成閉環(huán),就起到了天線的作用,會增強EMI輻射強度。信號線的不等長同樣會造成兩條線路阻抗不平衡而形成共模干擾,因此,在板卡設(shè)計中都會將信號線以蛇形線方式解決使其阻抗盡量的一致,削弱共模干擾。同時,蛇形線在布線時也會最大程度地減小彎曲的擺幅,以減小環(huán)形區(qū)域的面積,從而減少輻射強度。在高速PCB設(shè)計中,走線的長度普通都不會是時鐘信號波長1/4的整數(shù)倍,否則會產(chǎn)生諧振,產(chǎn)生嚴(yán)重的EMI輻射。同時走線要確?;亓魍緩阶钚〔⑶視惩āθヱ铍娙莸脑O(shè)計來說,其設(shè)立要靠近電源管腳,并且電容的電源走線和地線所包圍的面積要盡量地小,這樣才干減小電源的波紋和噪聲,減少EMI輻射。固然,上述只是PCB防EMI設(shè)計中的一小部分原則。主板的Layout設(shè)計是一門非常復(fù)雜而精深的學(xué)問,甚至諸多DIYer都有這樣的共識:Layout設(shè)計得優(yōu)秀與否,對主板的整體性能有著極為重大的影響。主板布線的劃斷如果想將主板電路間的電磁干擾完全隔離,這是絕對不可能的,由于我們沒有方法將電磁干擾一種個地“包”起來,因此要采用其它方法來減少干擾的程度。主板PCB中的金屬導(dǎo)線是傳遞干擾電流的罪魁禍?zhǔn)?,它像天線同樣傳遞和發(fā)射著電磁干擾信號,因此在適宜的地方“截斷”這些“天線”是有用的防EMI的辦法?!疤炀€”斷了,再以一圈絕緣體將其包圍,它對外界的干擾自然就會大大共模電感減小。如果在斷開處使用濾波電容還能夠更進(jìn)一步減少電磁輻射泄露。這種設(shè)計能明顯地增加高頻工作時的穩(wěn)定性和避免EMI輻射的產(chǎn)生,許多大的主板廠商在設(shè)計上都使用了該辦法。圖注:“斷開”的設(shè)計用來制止電磁干擾借這些接口向外傳送形成電磁輻射,圖中電路板上的亮線清晰可見。特別是USB接口部分采用該設(shè)計后,可在很大程度上大大改善EMI電流向外輻射的可能。主板接口的設(shè)計不知大家與否注意到,現(xiàn)在的主板都會附送一塊開口的薄鐵擋片,其實這也是用來防EMI的。即使現(xiàn)在的機箱EMI屏蔽性能都不錯,但電磁波還是會從機箱表面的開孔處泄漏出來,如PS/2接口、USB接口以及并、串口等的開口處??椎拇笮Q定了電磁干擾的泄露程度。開口的孔徑越小,電磁干擾輻射的削弱程度越大。對方形孔而言,L就是其對角線長度。使用了擋片之后,擋片上翹起的金屬觸片會和主板上的輸入輸出部分較好地通過機箱接地,不僅衰減了EMI,并且減小了方孔的尺寸,進(jìn)一步縮小L值,從而能夠更有效地屏蔽電磁干擾輻射。上述三點只是主板設(shè)計中除電路設(shè)計之外的幾個重要防EMI設(shè)計,由此可見,主板的防EMI設(shè)計是一種整體的概念,如果整體的設(shè)計不合格,就會帶來較大的電磁輻射,而這些也不是一種小小的共模電感所能彌補的。編輯本段從必要性看共模電感共模電感缺失=防EMI性能低下?這樣的說法顯然是頗為片面的。誠然,由于國家現(xiàn)在的EMI有關(guān)規(guī)范并不健全,部分廠商為了省料就鉆了這個空子,在整體防EMI性能上都大肆省料壓縮成本(其中就涉及共模電感的省略),這樣做的直接后果就是主板防EMI性能極其低下;但是對于那些整體設(shè)計優(yōu)秀,用料不縮水的主板,即使沒有共模電感,其整體防EMI性能仍能達(dá)成有關(guān)規(guī)定,這樣的產(chǎn)品仍然是合格的。因此,單純就與否有共模電感這一點來判斷主板的優(yōu)劣并不恰當(dāng).編輯本段共模電感的測量與診療概述電源濾波器的設(shè)計普通可從共模和差模兩方面來考慮。共模濾波器最重要的部分就是共模扼流圈,與差模扼流圈相比,共模扼流圈的一種明顯優(yōu)點在于它的電感值極高,并且體積又小,設(shè)計共模扼流圈時要考慮的一種重要問題是它的漏感,也就是差模電感。普通,計算漏感的方法是假定它為共模電感的1%,事實上漏感為共模電感的0.5%~4%之間。在設(shè)計最優(yōu)性能的扼流圈時,這個誤差的影響可能是不容無視的。漏感的重要性漏感是如何形成的呢?緊密繞制,且繞滿一周的環(huán)形線圈,即使沒有磁芯,其全部磁通都集中在線圈“芯”內(nèi)。但是,如果環(huán)形線圈沒有繞滿一周,或者繞制不緊密,那么磁通共模電感就會從芯中泄漏出來。這種效應(yīng)與線匝間的相對距離和螺旋管芯體的磁導(dǎo)率成正比。共模扼流圈有兩個繞組,這兩個繞組被設(shè)計成使它們所流過的電流沿線圈芯傳導(dǎo)時方向相反,從而使磁場為0。如果為了安全起見,芯體上的線圈不是雙線繞制,這樣兩個繞組之間就有相稱大的間隙,自然就引發(fā)磁通“泄漏”,這即是說,磁場在所關(guān)心的各個點上并非真正為0。共模扼流圈的漏感是差模電感。事實上,與差模有關(guān)的磁通必須在某點上離開芯體,換句話說,磁通在芯體外部形成閉合回路,而不僅僅只局限在環(huán)形芯體內(nèi)。如果芯體含有差模電感,那么,差模電流就會使芯體內(nèi)的磁通發(fā)生偏離零點,如果偏離太大,芯體便會發(fā)生磁飽和現(xiàn)象,使共模電感基本與無磁芯的電感同樣。成果,共模輻射的強度就猶如電路中沒有扼流圈同樣。差模電流在共模環(huán)形線圈中引發(fā)的磁通偏離可由下式得出:式中,是芯體中的磁通變化量,Ldm是測得的差模電感,是差模峰值電流,n為共模線圈的匝數(shù)。由于能夠通過控制B總,使之不大于B飽和,從而避免芯體發(fā)生磁飽和現(xiàn)象,有下列法則:式中,是差模峰值電流,Bmax是磁通量的最大偏離,n是線圈的匝數(shù),A是環(huán)形線圈的橫截面積。Ldm是線圈的差模電感。共模扼流圈的差模電感能夠按以下辦法測得:將其一引腿兩端短接,然后測量另外兩腿間的電感,其示值即為共模扼流圈的差模電感。共模扼流圈綜述濾波器設(shè)計時,假定共模與差模這兩部分是彼此獨立的。然而,這兩部分并非真正獨立,由于共模扼流圈能夠提供相稱大的差模電感。這部分差模電感可由分立的差模電感來模擬。為了運用差模電感,在濾波器的設(shè)計過程中,共模與差模不應(yīng)同時進(jìn)行,而應(yīng)當(dāng)按照一定的次序來做。首先,應(yīng)當(dāng)測量共模噪聲并將其濾除掉。采用差模克制網(wǎng)絡(luò)(DifferentialModeRejectionNetwork),能夠?qū)⒉钅3煞窒?,因此就能夠直接測量共模噪聲了。如果設(shè)計的共模濾波器要同時使差模噪聲不超出允許范疇,那么就應(yīng)測量共模與差模的混合噪聲。由于已知共模成分在噪聲容限下列,因此超標(biāo)的僅是差模成分,可用共模濾波器的差模漏感來衰減。對于低功率電源系統(tǒng),共模扼流圈的差模電感足以解決差模輻射問題,由于差模輻射的源阻抗較小,因此只有極少量的電感是有效的。盡管少量的差模電感非常有用,但太大的差模電感能夠使扼流圈發(fā)生磁飽和??筛鶕?jù)公式(2)作簡樸計算來避免磁飽和現(xiàn)象的發(fā)生。用LISN原理測量共模扼流圈飽和特性的辦法測量共模線圈磁芯(整體或部分)的飽和特性普通是很困難的。通過簡樸的實驗?zāi)軌蚩闯龉材V波器的衰減在多大程度上受由60Hz編置電流引發(fā)的電感減小量的影響。進(jìn)行此項測試需要一臺示波器和一種差??酥凭W(wǎng)絡(luò)(DMRN)。首先,用示波器來監(jiān)測線電壓。按以下辦法從示波器的A通道輸入信號,將示波器的時間基準(zhǔn)置為2ms/div,然后將觸發(fā)信號加在A通道上,在交流電壓達(dá)成峰值時會有線電流產(chǎn)生,此時濾波器效能的降級是意料中的事情。差模克制網(wǎng)絡(luò)(DMRN)的輸入端連接到LISN,輸出端用50的阻抗進(jìn)行匹配且與示波器的B通道相連。當(dāng)共模扼流圈工作在線性區(qū)時,在輸入電流波動期間,B通道監(jiān)測到的發(fā)射增加值不超出6—10dB。圖1為此測試在示波器上顯示的成果,上面的曲線為共模發(fā)射;下面的曲線為線電壓。在線電壓峰值期間,橋式整流器正向?qū)ㄇ覀魉统潆婋娏?。圖1示波器上顯示的由于60Hz充電電流引發(fā)的共模扼流圈的降級圖一如果共模扼流圈達(dá)成飽和,那么在輸入浪涌增加時,發(fā)射將會增加。如果共模扼流圈達(dá)成強飽和,發(fā)射強度與不加濾波器時的狀況是同樣的,也就是說很容易達(dá)成40dB以上。這些實驗數(shù)據(jù)可用其它辦法來解釋。發(fā)射最小值(線電流為0的時候)是濾波器無偏置電流時體現(xiàn)出來的效果。峰值發(fā)射與最小發(fā)射的比率,即降級因子,用來衡量線電流偏移量對濾波器實際效果的影響。降級因子較大表明共模扼流圈磁芯完全沒有得到恰當(dāng)?shù)氖褂茫^好的濾波器的“固有降級因子”差不多在2—4之間。它是由兩種現(xiàn)象產(chǎn)生的:第一,60Hz充電電流引發(fā)的電感減?。ㄈ缟纤觯?;第二,橋式整流器的正向及反向?qū)ā9材0l(fā)射的等效電路由一種阻抗約為200pF的電壓源、二極管阻抗和LISN的共模阻抗構(gòu)成,如圖2所示。當(dāng)橋式整流器正向偏置時,在源阻抗、25和LISN共模阻抗之間會產(chǎn)生分壓現(xiàn)象。當(dāng)橋整流器反向偏置時,在源阻抗、整流橋反偏電容、LISN之間產(chǎn)生分壓現(xiàn)象。當(dāng)二極管整流橋反向偏置電容較小時,對共模濾除有一定效果。當(dāng)整流橋正向偏置時則對共模濾除沒有影響。圖2共模輻射等效電路圖2共模輻射等效電路由于產(chǎn)生了分壓,固有降級因子的預(yù)期值為2左右。實際值的變化相稱大,重要取決于源阻抗和二極管整流橋反向偏置電容的實際大小。在Flugan發(fā)明的一種電路中,正是應(yīng)用這個原理來減小鎮(zhèn)流器的傳導(dǎo)發(fā)射的。用電流原理測量共模扼流圈飽和特性的辦法如果測試人員相稱謹(jǐn)慎,那么就能夠采用類似MIL-STD-461中的測試裝置來檢測共模扼流圈的飽和特性。這個原理的應(yīng)用以下:測試時采用兩只電流探頭,低頻探頭監(jiān)測線電流,高頻探頭僅測量共模發(fā)射電流。線電流監(jiān)視器作為觸發(fā)源。但是,使用電流探頭的一種隱患是差模電流衰減是管芯內(nèi)繞組導(dǎo)線對稱性的函數(shù)。如果精心合理安排繞線布局的話,30dB左右的差模電流衰減是能夠得到的。即使達(dá)成這個衰減值,測得的差模分量也可能超出預(yù)期的共模分量值。可用以下兩項技術(shù)來解決這一問題:第一,將一只6kHz轉(zhuǎn)折頻率的高階高通濾波器與示波器串聯(lián)(注意應(yīng)用50的終端阻抗進(jìn)行匹配)。第二,在每只10μF的電容與電源總線之間接入一根導(dǎo)線。為了測量共模輻射,電流探頭應(yīng)夾在這些載有極小線電流的導(dǎo)線近旁。共模扼流圈內(nèi)存在的差模與共模磁通為了快速且淺顯地介紹共模扼流圈的作用,可考慮采用下列敘述:“共模扼流圈管芯兩側(cè)的磁場互相抵消,因此不存在磁通使管芯飽和?!北M管這種敘述對共模扼流圈作用的直覺敘述具體化了,但實質(zhì)上并非如此。參考下列圍繞麥克斯韋方程所進(jìn)行的討論*假設(shè)電流密度J產(chǎn)生磁場H,那么就可得出結(jié)論:附近的另一種電流不會抵消或制止磁場或者是由此而產(chǎn)生的電場。*同樣一種相鄰的電流能夠造成磁場途徑的變化。*在環(huán)形共模電感的特殊場合中,每條引線中的差模電流密度可假定是相等的,且方向相反。因此由此而產(chǎn)生的磁場必然在環(huán)形磁芯周邊上的總和為0,而在其外部則不為0!磁芯的作用就仿佛它在線圈繞組的間隙處裂為兩半時所體現(xiàn)出來的效果同樣。每個繞組在環(huán)形線圈二分之一的區(qū)域內(nèi)產(chǎn)生磁場,意指穿過空氣的磁場必然會形成自封閉回路,圖3是環(huán)形磁芯和差模電流磁路的示意圖。圖3共模環(huán)形磁芯中差模磁路示意圖圖3共模環(huán)形磁芯中差模磁路示意圖漏感綜述共模扼流圈能發(fā)揮一定的作用是由于μcm比μdm大好幾個數(shù)量級的緣故,由于共模電流普通很小,能夠通過使L/D保持在較低值來獲得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論