卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)外文文獻(xiàn)翻譯中英文2020_第1頁(yè)
卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)外文文獻(xiàn)翻譯中英文2020_第2頁(yè)
卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)外文文獻(xiàn)翻譯中英文2020_第3頁(yè)
卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)外文文獻(xiàn)翻譯中英文2020_第4頁(yè)
卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)外文文獻(xiàn)翻譯中英文2020_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

#卷積神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)相關(guān)外文翻譯中英文2020英文Predictionofcompositemicrostructurestress-straincurvesusing

convolutionalneuralnetworksCharlesYang,YoungsooKim,SeunghwaRyu,GraceGuAbstractStress-straincurvesareanimportantrepresentationofamaterial'smechanicalproperties,fromwhichimportantpropertiessuchaselasticmodulus,strength,andtoughness,aredefined.However,generatingstress-straincurvesfromnumericalmethodssuchasfiniteelementmethod(FEM)iscomputationallyintensive,especiallywhenconsideringtheentirefailurepathforamaterial.Asaresult,itisdifficulttoperformhighthroughputcomputationaldesignofmaterialswithlargedesignspaces,especiallywhenconsideringmechanicalresponsesbeyondtheelasticlimit.Inthiswork,acombinationofprincipalcomponentanalysis(PCA)andconvolutionalneuralnetworks(CNN)areusedtopredicttheentirestress-strainbehaviorofbinarycompositesevaluatedovertheentirefailurepath,motivatedbythesignificantlyfasterinferencespeedofempiricalmodels.WeshowthatPCAtransformsthestress-straincurvesintoaneffectivelatentspacebyvisualizingtheeigenbasisofPCA.Despitehavingadatasetofonly10-27%ofpossiblemicrostructureconfigurations,themeanabsoluteerrorofthepredictionis<10%oftherangeofvaluesinthedataset,whenmeasuringmodelperformancebasedonderivedmaterialdescriptors,suchasmodulus,strength,andtoughness.Ourstudydemonstratesthepotentialtousemachinelearningtoacceleratematerialdesign,characterization,andoptimization.Keywords:Machinelearning,Convolutionalneuralnetworks,Mechanicalproperties,Microstructure,ComputationalmechanicsIntroductionUnderstandingtherelationshipbetweenstructureandpropertyformaterialsisaseminalprobleminmaterialscience,withsignificantapplicationsfordesigningnext-generationmaterials.Aprimary??*!?*!????/"*motivatingexampleisdesigningcompositemicrostructuresforload-bearingapplications,ascompositesofferadvantageouslyhighspecificstrengthandspecifictoughness.Recentadvancementsinadditivemanufacturinghavefacilitatedthefabricationofcomplexcompositestructures,andasaresult,avarietyofcomplexdesignshavebeenfabricatedandtestedvia3D-printingmethods.Whilemoreadvancedmanufacturingtechniquesareopeningupunprecedentedopportunitiesforadvancedmaterialsandnovelfunctionalities,identifyingmicrostructureswithdesirablepropertiesisadifficultoptimizationproblem.Onemethodofidentifyingoptimalcompositedesignsisbyconstructinganalyticaltheories.Forconventionalparticulate/fiber-reinforcedcomposites,avarietyofhomogenizationtheorieshavebeendevelopedtopredictthemechanicalpropertiesofcompositesasafunctionofvolumefraction,aspectratio,andorientationdistributionofreinforcements.Becausemanynaturalcomposites,synthesizedviaself-assemblyprocesses,haverelativelyperiodicandregularstructures,theirmechanicalpropertiescanbepredictediftheloadtransfermechanismofarepresentativeunitcellandtheroleoftheself-similarhierarchicalstructureareunderstood.However,theapplicabilityofanalyticaltheoriesislimitedinquantitativelypredictingcompositepropertiesbeyondtheelasticlimitinthepresenceofdefects,becausesuchtheoriesrelyontheconceptofrepresentativevolumeelement(RVE),astatisticalrepresentationofmaterialproperties,whereasthestrengthandfailureisdeterminedbytheweakestdefectintheentiresampledomain.Numericalmodelingbasedonfiniteelementmethods(FEM)cancomplementanalyticalmethodsforpredictinginelasticpropertiessuchasstrengthandtoughnessmodulus(referredtoastoughness,hereafter)whichcanonlybeobtainedfromfullstress-straincurves.However,numericalschemescapableofmodelingtheinitiationandpropagationofthecurvilinearcracks,suchasthecrackphasefieldmodel,arecomputationallyexpensiveandtime-consumingbecauseaveryfinemeshisrequiredtoaccommodatehighlyconcentratedstressfieldnearcracktipandtherapidvariationofdamageparameterneardiffusivecracksurface.Meanwhile,analyticalmodelsrequiresignificanthumaneffortanddomainexpertiseandfailtogeneralizetosimilardomainproblems.Inordertoidentifyhigh-performingcompositesinthemidstoflargedesignspaceswithinrealistictime-frames,weneedmodelsthatcanrapidlydescribethemechanicalpropertiesofcomplexsystemsandbegeneralizedeasilytoanalogoussystems.Machinelearningoffersthebenefitofextremelyfastinferencetimesandrequiresonlytrainingdatatolearnrelationshipsbetweeninputsandoutputse.g.,compositemicrostructuresandtheirmechanicalproperties.Machinelearninghasalreadybeenappliedtospeeduptheoptimizationofseveraldifferentphysicalsystems,includinggraphenekirigamicuts,fine-tuningspinqubitparameters,andprobemicroscopytuning.Suchmodelsdonotrequiresignificanthumaninterventionorknowledge,learnrelationshipsefficientlyrelativetotheinputdesignspace,andcanbegeneralizedtodifferentsystems.Inthispaper,weutilizeacombinationofprincipalcomponentanalysis(PCA)andconvolutionalneuralnetworks(CNN)topredicttheentirestress-straincurveofcompositefailuresbeyondtheelasticlimit.Stress-straincurvesarechosenasthemodel'stargetbecausetheyaredifficulttopredictgiventheirhighdimensionality.Inaddition,stress-straincurvesareusedtoderiveimportantmaterialdescriptorssuchasmodulus,strength,andtoughness.Inthissense,predictingstress-straincurvesisamoregeneraldescriptionofcompositespropertiesthananycombinationofscalermaterialdescriptors.Adatasetof100,000differentcompositemicrostructuresandtheircorrespondingstress-straincurvesareusedtotrainandevaluatemodelperformance.Duetothehighdimensionalityofthestress-straindataset,severaldimensionalityreductionmethodsareused,includingPCA,featuringablendofdomainunderstandingandtraditionalmachinelearning,tosimplifytheproblemwithoutlossofgeneralityforthemodel.Wewillfirstdescribeourmodelingmethodologyandtheparametersofourfinite-elementmethod(FEM)usedtogeneratedata.VisualizationsofthelearnedPCAlatentspacearethenpresented,alongwithmodelperformanceresults.CNNimplementationandtrainingAconvolutionalneuralnetworkwastrainedtopredictthislowerdimensionalrepresentationofthestressvector.TheinputtotheCNNwasabinarymatrixrepresentingthecompositedesign,with0'scorrespondingtosoftblocksand1'scorrespondingtostiffblocks.PCAwasimplementedwiththeopen-sourcePythonpackagescikit-learn,usingthedefaulthyperparameters.CNNwasimplementedusingKeraswithaTensorFlowbackend.Thebatchsizeforallexperimentswassetto16andthenumberofepochsto30;theAdamoptimizerwasusedtoupdatetheCNNweightsduringbackpropagation.Atrain/testsplitratioof95:5isused—wejustifyusingasmallerratiothanthestandard80:20becauseofarelativelylargedataset.Witharatioof95:5andadatasetwith100,000instances,thetestsetsizestillhasenoughdatapoints,roughlyseveralthousands,foritsresultstogeneralize.EachcolumnofthetargetPCA-representationwasnormalizedtohaveameanof0andastandarddeviationof1topreventinstabletraining.FiniteelementmethoddatagenerationFEMwasusedtogeneratetrainingdatafortheCNNmodel.Althoughinitiallyobtainedtrainingdataiscompute-intensive,ittakesmuchlesstimetotraintheCNNmodelandevenlesstimetomakehigh-throughputinferencesoverthousandsofnew,randomlygeneratedcomposites.Thecrackphasefieldsolverwasbasedonthehybridformulationforthequasi-staticfractureofelasticsolidsandimplementedinthecommercialFEMsoftwareABAQUSwithauser-elementsubroutine(UEL).VisualizingPCAInordertobetterunderstandtherolePCAplaysineffectivelycapturingtheinformationcontainedinstress-straincurves,theprincipalcomponentrepresentationofstress-straincurvesisplottedin3dimensions.Specifically,wetakethefirstthreeprincipalcomponents,whichhaveacumulativeexplainedvariance~85%,andplotstress-straincurvesinthatbasisandprovideseveraldifferentanglesfromwhichtoviewthe3Dplot.Eachpointrepresentsastress-straincurveinthePCAlatentspaceandiscoloredbasedontheassociatedmodulusvalue.itseemsthatthePCAisabletospreadoutthecurvesinthelatentspacebasedonmodulusvalues,whichsuggeststhatthisisausefullatentspaceforCNNtomakepredictionsin.CNNmodeldesignandperformanceOurCNNwasafullyconvolutionalneuralnetworki.e.theonlydenselayerwastheoutputlayer.Allconvolutionlayersused16filterswithastrideof1,withaLeakyReLUactivationfollowedbyBatchNormalization.Thefirst3Convblocksdidnothave2DMaxPooling,followedby9convblockswhichdidhavea2DMaxPoolinglayer,placedaftertheBatchNormalizationlayer.AGlobalAveragePoolingwasusedtoreducethedimensionalityoftheoutputtensorfromthesequentialconvolutionblocksandthefinaloutputlayerwasaDenselayerwith15nodes,whereeachnodecorrespondedtoaprincipalcomponent.Intotal,ourmodelhad26,319trainableweights.Ourarchitecturewasmotivatedbytherecentdevelopmentandconvergenceontofully-convolutionalarchitecturesfortraditionalcomputervisionapplications,whereconvolutionsareempiricallyobservedtobemoreefficientandstableforlearningasopposedtodenselayers.Inaddition,inourpreviouswork,wehadshownthatCNN'swereacapablearchitectureforlearningtopredictmechanicalpropertiesof2Dcomposites[30].Theconvolutionoperationisanintuitivelygoodfitforpredictingcrackpropagationbecauseitisalocaloperation,allowingittoimplicitlyfeaturizeandlearnthelocalspatialeffectsofcrackpropagation.AfterapplyingPCAtransformationtoreducethedimensionalityofthetargetvariable,CNNisusedtopredictthePCArepresentationofthestress-straincurveofagivenbinarycompositedesign.AftertrainingtheCNNonatrainingset,itsabilitytogeneralizetocompositedesignsithasnotseenisevaluatedbycomparingitspredictionsonanunseentestset.However,anaturalquestionthatemergesishowtoevaluateamodel'sperformanceatpredictingstress-straincurvesinareal-worldengineeringcontext.Whilesimplescalermetricssuchasmeansquarederror(MSE)andmeanabsoluteerror(MAE)generalizeeasilytovectortargets,itisnotclearhowtointerprettheseaggregatesummariesofperformance.Itisdifficulttousesuchmetricstoaskquestionssuchas“Isthismodelgoodenoughtouseintherealworld”and“Onaverage,howpoorlywillagivenpredictionbeincorrectrelativetosomegivenspecification”.Althoughbeingabletopredictstress-straincurvesisanimportantapplicationofFEMandahighlydesirablepropertyforanymachinelearningmodeltolearn,itdoesnoteasilylenditselftointerpretation.Specifically,thereisnosimplequantitativewaytodefinewhethertwostress-straincurvesare“close”or“simi-lwaro”rlduwniittsh.realGiventhatstress-straincurvesareoftentimesintermediaryrepresentationsofacompositepropertythatareusedtoderivemoremeaningfuldescriptorssuchasmodulus,strength,andtoughness,wedecidedtoevaluatethemodelinananalogousfashion.TheCNNpredictioninthePCAlatentspacerepresentationistransformedbacktoastress-straincurveusingPCA,andusedtoderivethepredictedmodulus,strength,andtoughnessofthecomposite.Thepredictedmaterialdescriptorsarethencomparedwiththeactualmaterialdescriptors.Inthisway,MSEandMAEnowhaveclearlyinterpretableunitsandmeanings.Theaverageperformanceofthemodelwithrespecttotheerrorbetweentheactualandpredictedmaterialdescriptorvaluesderivedfromstress-straincurvesarepresentedinTable.TheMAEformaterialdescriptorsprovidesaneasilyinterpretablemetricofmodelperformanceandcaneasilybeusedinanydesignspecificationtoprovideconfidenceestimatesofamodelprediction.Whencomparingthemeanabsoluteerror(MAE)totherangeofvaluestakenonbythedistributionofmaterialdescriptors,wecanseethattheMAEisrelativelysmallcomparedtotherange.TheMAEcomparedtotherangeis<10%forallmaterialdescriptors.Relativelytightconfidenceintervalsontheerrorindicatethatthismodelarchitectureisstable,themodelperformanceisnotheavilydependentoninitialization,andthatourresultsarerobusttodifferenttrain-testsplitsofthedata.FutureworkFutureworkincludescombiningempiricalmodelswithoptimizationalgorithms,suchasgradient-basedmethods,toidentifycompositedesignsthatyieldcomplementarymechanicalproperties.Theabilityofatrainedempiricalmodeltomakehigh-throughputpredictionsoverdesignsithasneverseenbeforeallowsforlargeparameterspaceoptimizationthatwouldbecomputationallyinfeasibleforFEM.Inaddition,weplantoexploredifferentvisualizationsofempiricalmodelsinaneffortto“openuptheblack-box”ofsuchmodels.Applyingmachinelearningtofinite-elementmethodsisarapidlygrowingfieldwiththepotentialtodiscovernovelnext-generationmaterialstailoredforavarietyofapplications.Wealsonotethattheproposedmethodcanbereadilyappliedtopredictotherphysicalpropertiesrepresentedinasimilarvectorizedformat,suchaselectron/phonondensityofstates,andsound/lightabsorptionspectrum.ConclusionInconclusion,weappliedPCAandCNNtorapidlyandaccuratelypredictthestress-straincurvesofcompositesbeyondtheelasticlimit.Indoingso,severalnovelmethodologicalapproachesweredeveloped,includingusingthederivedmaterialdescriptorsfromthestress-straincurvesasinterpretablemetricsformodelperformanceanddimensionalityreductiontechniquestostress-straincurves.Thismethodhasthepotentialtoenablecompositedesignwithrespecttomechanicalresponsebeyondtheelasticlimit,whichwaspreviouslycomputationallyinfeasible,andcangeneralizeeasilytorelatedproblemsoutsideofmicrostructuraldesignforenhancingmechanicalproperties.中文基于卷積神經(jīng)網(wǎng)絡(luò)的復(fù)合材料微結(jié)構(gòu)應(yīng)力-應(yīng)變曲線預(yù)測(cè)

查爾斯,吉姆,瑞恩,格瑞斯摘要應(yīng)力-應(yīng)變曲線是材料機(jī)械性能的重要代表,從中可以定義重要的性能,例如彈性模量,強(qiáng)度和韌性。但是,從數(shù)值方法(例如有限兀方法(FEM))生成應(yīng)力-應(yīng)變曲線的計(jì)算量很大,尤其是在考慮材料的整個(gè)失效路徑時(shí)。結(jié)果,難以對(duì)具有較大設(shè)計(jì)空間的材料進(jìn)行高通量計(jì)算設(shè)計(jì),尤其是在考慮超出彈性極限的機(jī)械響應(yīng)時(shí)。在這項(xiàng)工作中,主成分分析(PCA)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合被用于預(yù)測(cè)在整個(gè)失效路徑上評(píng)估的二兀復(fù)合材料的整體應(yīng)力-應(yīng)變行為,這是由于經(jīng)驗(yàn)?zāi)P偷耐茢嗨俣蕊@著加快的緣故。我們展示了PCA通過可視化PCA的本征基礎(chǔ)將應(yīng)力-應(yīng)變曲線轉(zhuǎn)換為有效的潛在空間。盡管只有可能的微觀結(jié)構(gòu)配置的10-27%的數(shù)據(jù)集,但在基于派生的材料描述符(例如模量,強(qiáng)度)測(cè)量模型性能時(shí),預(yù)測(cè)的平均絕對(duì)誤差小于數(shù)據(jù)集中值范圍的10%和韌性。我們的研究表明使用機(jī)器學(xué)習(xí)來加速材料設(shè)計(jì),表征和優(yōu)化的潛力。關(guān)鍵詞:機(jī)器學(xué)習(xí),卷積神經(jīng)網(wǎng)絡(luò),力學(xué)性能,微觀結(jié)構(gòu),計(jì)算力學(xué)引言理解材料的結(jié)構(gòu)與性能之間的關(guān)系是材料科學(xué)中的一個(gè)重要問題,在設(shè)計(jì)下一代材料方面有重要的應(yīng)用。一個(gè)主要的動(dòng)機(jī)示例是設(shè)計(jì)用于承重應(yīng)用的復(fù)合材料微結(jié)構(gòu),因?yàn)閺?fù)合材料可提供有利的高比強(qiáng)度和比韌性。增材制造的最新進(jìn)展促進(jìn)了復(fù)雜復(fù)合結(jié)構(gòu)的制造,結(jié)果,通過3D打印方法制造并測(cè)試了各種復(fù)雜設(shè)計(jì)。盡管更先進(jìn)的制造技術(shù)為先進(jìn)的材料和新穎的功能性開辟了前所未有的機(jī)遇,但要確定具有所需性能的微結(jié)構(gòu)卻是一個(gè)困難的優(yōu)化問題。確定最佳組合設(shè)計(jì)的一種方法是構(gòu)建分析理論。對(duì)于常規(guī)的顆粒/纖維增強(qiáng)復(fù)合材料,已開發(fā)出多種均質(zhì)化理論來預(yù)測(cè)復(fù)合材料的機(jī)械性能隨增強(qiáng)材料的體積分?jǐn)?shù),縱橫比和取向分布的變化。由于許多通過自組裝過程合成的天然復(fù)合材料具有相對(duì)周期性和規(guī)則的結(jié)構(gòu),因此,如果了解代表性單位晶格的載荷傳遞機(jī)理和自相似分層結(jié)構(gòu)的作用,則可以預(yù)測(cè)其機(jī)械性能。但是,在存在缺陷的情況下,分析理論的應(yīng)用范圍僅限于定量預(yù)測(cè)超出彈性極限的復(fù)合材料性能,因?yàn)榇祟惱碚撘蕾囉诖眢w積元素(RVE)的概念,即材料性能的統(tǒng)計(jì)表示,而強(qiáng)度和強(qiáng)度失敗取決于整個(gè)樣本域中最弱的缺陷。基于有限元方法(FEM)的數(shù)值建??梢匝a(bǔ)充用于預(yù)測(cè)非彈性屬性(例如強(qiáng)度和韌性模量,以下簡(jiǎn)稱韌性)的分析方法,這些方法只能從完整的應(yīng)力-應(yīng)變曲線獲得。但是,由于需要非常細(xì)的網(wǎng)格來適應(yīng)裂紋尖端附近的高度集中的應(yīng)力場(chǎng),因此能夠模擬曲線裂紋的萌生和擴(kuò)展的數(shù)值模式(例如裂紋相場(chǎng)模型)在計(jì)算上是昂貴且費(fèi)時(shí)的。擴(kuò)散裂紋表面附近損傷參數(shù)的變化。同時(shí),分析模型需要大量的人力和領(lǐng)域?qū)I(yè)知識(shí),并且不能推廣到類似的領(lǐng)域問題。為了在現(xiàn)實(shí)的時(shí)間內(nèi)在大型設(shè)計(jì)空間中識(shí)別出高性能的復(fù)合材料,我們需要能夠快速描述復(fù)雜系統(tǒng)的機(jī)械性能并易于推廣到類似系統(tǒng)的模型。機(jī)器學(xué)習(xí)提供了極快的推理時(shí)間的優(yōu)勢(shì),并且僅需訓(xùn)練數(shù)據(jù)即可學(xué)習(xí)輸入和輸出之間的關(guān)系,例如復(fù)合微結(jié)構(gòu)及其機(jī)械性能。機(jī)器學(xué)習(xí)已被應(yīng)用來加速幾個(gè)不同物理系統(tǒng)的優(yōu)化,包括石墨烯kirigami切割,微調(diào)自旋qubit參數(shù)和探針顯微鏡微調(diào)。這樣的模型不需要大量的人工干預(yù)或知識(shí),不需要相對(duì)于輸入設(shè)計(jì)空間有效地學(xué)習(xí)關(guān)系,并且可以推廣到不同的系統(tǒng)。在本文中,我們結(jié)合主成分分析(PCA)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)來預(yù)測(cè)超出彈性極限的復(fù)合材料破壞的整個(gè)應(yīng)力-應(yīng)變曲線。選擇應(yīng)力-應(yīng)變曲線作為模型的目標(biāo),因?yàn)殍b于它們的高維數(shù),它們很難預(yù)測(cè)。另外,應(yīng)力-應(yīng)變曲線用于導(dǎo)出重要的材料描述,如模量,強(qiáng)度和韌性。從這個(gè)意義上講,預(yù)測(cè)應(yīng)力-應(yīng)變曲線是比定標(biāo)器材料描述符的任何組合更全面的復(fù)合材料性能描述。100,000個(gè)不同的復(fù)合微結(jié)構(gòu)及其對(duì)應(yīng)的應(yīng)力-應(yīng)變曲線的數(shù)據(jù)集用于訓(xùn)練和評(píng)估模型性能。由于應(yīng)力-應(yīng)變數(shù)據(jù)集的高維性,因此使用了多種降維方法,包括PCA,該方法將領(lǐng)域理解和傳統(tǒng)機(jī)器學(xué)習(xí)相結(jié)合,從而簡(jiǎn)化了問題,而又不損失模型的一般性。我們將首先描述建模方法和用于生成數(shù)據(jù)的有限元方法(FEM)的參數(shù)。然后呈現(xiàn)學(xué)習(xí)到的PCA潛在空間的可視化以及模型性能結(jié)果。CNN的實(shí)施和培訓(xùn)卷積神經(jīng)網(wǎng)絡(luò)經(jīng)過訓(xùn)練可以預(yù)測(cè)應(yīng)力向量的這種較低維表示。CNN的輸入是代表復(fù)合設(shè)計(jì)的二進(jìn)制矩陣,其中0對(duì)應(yīng)于軟塊,而1對(duì)應(yīng)于硬塊。PCA是使用默認(rèn)的超參數(shù)通過開源Python軟件包scikit-learn實(shí)現(xiàn)的。CNN是使用Keras與TensorFlow后端實(shí)現(xiàn)的。所有實(shí)驗(yàn)的批次大小均設(shè)置為16,歷時(shí)數(shù)設(shè)置為30。Adam優(yōu)化器用于在反向傳播期間更新CNN權(quán)重。使用的火車/測(cè)試拆分比率為95:5-由于數(shù)據(jù)集相對(duì)較大,因此我們使用比標(biāo)準(zhǔn)80:20小的比率進(jìn)行驗(yàn)證。比率為95:5且具有100,000個(gè)實(shí)例的數(shù)據(jù)集,測(cè)試集大小仍然具有足夠的數(shù)據(jù)點(diǎn)(大約幾千個(gè)),以便將其結(jié)果推廣。將目標(biāo)PCA表示的每一列標(biāo)準(zhǔn)化為平均值為0,標(biāo)準(zhǔn)差為1,以防止訓(xùn)練不穩(wěn)定。有限元方法數(shù)據(jù)生成FEM用于生成CNN模型的訓(xùn)練數(shù)據(jù)。盡管最初獲得的訓(xùn)練數(shù)據(jù)是計(jì)算密集型的,但訓(xùn)練CNN模型所需的時(shí)間要少得多,并且可以對(duì)成千上萬個(gè)新的,隨機(jī)生成的復(fù)合物進(jìn)行高吞吐量推斷的時(shí)間更少。裂紋相場(chǎng)求解器基于用于彈性固體準(zhǔn)靜態(tài)斷裂的混合公式,并在帶有用戶元素子例程(UEL)的商業(yè)FEM軟件ABAQUS中實(shí)現(xiàn)。可視化PCA為了更好地理解PCA在有效捕獲應(yīng)力-應(yīng)變曲線中包含的信息中所起的作用,應(yīng)力-應(yīng)變曲線的主成分表示形式分為3維。具體來說,我們采用前三個(gè)主要成分,它們具有85%的累積解釋方差,并在此基礎(chǔ)上繪制應(yīng)力-應(yīng)變曲線,并提供幾個(gè)不同的角度來查看3D繪圖。每個(gè)點(diǎn)代表PCA潛在空間中的應(yīng)力-應(yīng)變曲線,并根據(jù)關(guān)聯(lián)的模量值進(jìn)行著色。似乎PCA能夠基于模量值在潛在空間中展開曲線,這表明這是CNN進(jìn)行預(yù)測(cè)的有用潛在空間。CNN模型設(shè)計(jì)與性能我們的CNN是一個(gè)全卷積神經(jīng)網(wǎng)絡(luò),即唯一的密集層是輸出層。所有卷積層都使用16個(gè)步幅為1的濾波器,并激活LeakyReLU,然后進(jìn)行BatchNormalization。前三個(gè)Conv塊沒有2DMaxPooling,然后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論