江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題_第1頁
江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題_第2頁
江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題_第3頁
江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題_第4頁
江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省興化一中2023年高三下學期4月份月考數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.2.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.43.已知函數(shù),則()A. B. C. D.4.設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.5.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知向量,,若,則()A. B. C.-8 D.87.中國古代數(shù)學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.48.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.9.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或910.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.11.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關12.當時,函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線與直線互相垂直,則_____.14.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.15.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.16.設為銳角,若,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.18.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大?。唬?)若,的面積為,求及的值.19.(12分)已知函數(shù)(是自然對數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數(shù)取極值時對應的自變量的值).20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.21.(12分)已知數(shù)列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.22.(10分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結果及表格數(shù)據(jù),建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數(shù)的性質,數(shù)形結合思想,轉化與化歸思想,屬于中檔題2、B【解析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3、A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎題.4、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學生數(shù)形結合的思想,是一道中檔題.5、A【解析】

設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于??碱}.6、B【解析】

先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.7、D【解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.8、C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.9、C【解析】

由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎題.10、C【解析】

設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.11、D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.12、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】

求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數(shù)的幾何意義,根據(jù)條件建立方程關系是解決本題的關鍵.14、【解析】

由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調性可知其在區(qū)間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數(shù)量積的最值問題,應用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調性或基本不等式求得最值,屬于較難題.15、【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設,由球與四棱錐的內(nèi)切關系可知,設,用和表示四棱錐的體積,解得和的關系,進而表示出內(nèi)切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設,,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當且僅當時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.16、【解析】

∵為銳角,,∴,∴,,故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)當時,<0,單調遞減;當時,>0,單調遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導,再對a進行討論,判斷函數(shù)的單調性;第(Ⅱ)問,利用導數(shù)判斷函數(shù)的單調性,從而證明結論,第(Ⅲ)問,構造函數(shù)=(),利用導數(shù)判斷函數(shù)的單調性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調遞減.由=0有.當時,<0,單調遞減;當時,>0,單調遞增.(Ⅱ)令=,則=.當時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當時,>0.當,時,=.故當>在區(qū)間內(nèi)恒成立時,必有.當時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調遞增.又因為=0,所以當時,=>0,即>恒成立.綜上,.【考點】導數(shù)的計算,利用導數(shù)求函數(shù)的單調性,解決恒成立問題【名師點睛】本題考查導數(shù)的計算,利用導數(shù)求函數(shù)的單調性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調性,基本方法是求,解方程,再通過的正負確定的單調性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結論縮小參數(shù)取值范圍.比較新穎,學生不易想到,有一定的難度.18、(1)(2);【解析】

(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.19、(1);(2);(3).【解析】

(1)利用導數(shù)的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調遞減,在上單調遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.(2),.因為函數(shù)在區(qū)間上單調遞增,所以,且恒成立,即,所以,即,又,故,所以實數(shù)的取值范圍是.(3).因為函數(shù)在區(qū)間上有兩個極值點,所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調遞減,在上單調遞增,所以,解得且.又由,所以,且當和時,單調遞增,當時,單調遞減,是極值點,此時令,則,所以在上單調遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當時,;當時,.所以,所以在上單調遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點睛】本題考查導數(shù)的綜合應用,涉及到導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的單調性、極值點,不等式恒成立等知識,是一道難題.20、(1);(2);(3)【解析】

(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.21、(1)見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論