版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年安徽省安慶第一中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個(gè)切點(diǎn)為,則的取值范圍為()A. B.C. D.2.已知是拋物線的焦點(diǎn),是拋物線的準(zhǔn)線,點(diǎn),連接交拋物線于點(diǎn),,則的面積為()A.4 B.9C. D.3.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.4.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>05.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點(diǎn)重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<16.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.7.已知數(shù)列{}滿足,則()A. B.C. D.8.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件10.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過點(diǎn)O且與直線a,b都相交的直線B.過點(diǎn)O一定可以作一條直線與直線a,b都相交C.過點(diǎn)O可以作無(wú)數(shù)多條直線與直線a,b都相交D.過點(diǎn)O至多可以作一條直線與直線a,b都相交11.設(shè)實(shí)數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.812.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.11二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______14.若直線的方向向量為,平面的一個(gè)法向量為,則直線與平面所成角的正弦值為______.15.已知銳角的內(nèi)角,,的對(duì)邊分別為,,,且.若,則外接圓面積的最小值為______16.若直線與直線平行,則實(shí)數(shù)m的值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,數(shù)列前項(xiàng)和為.(1)求數(shù)列,的通項(xiàng)公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項(xiàng)和為,令,求證:.18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項(xiàng)公式;(2)若,的前項(xiàng)和是,求證:.19.(12分)已知空間三點(diǎn).(1)求以為鄰邊平行四邊形的周長(zhǎng)和面積;(2)若,且分別與垂直,求向量的坐標(biāo).20.(12分)已知等差數(shù)列和正項(xiàng)等比數(shù)列滿足(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和21.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說明理由.22.(10分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因?yàn)椋?,即,故選:B2、D【解析】根據(jù)題意求得拋物線的方程為和焦點(diǎn)為,由,得到為的中點(diǎn),得到,代入拋物線方程,求得,進(jìn)而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點(diǎn)為,因?yàn)?,可得可得三點(diǎn)共線,且為的中點(diǎn),又因?yàn)椋?,所以,將點(diǎn)代入拋物線,可得,所以的面積為.故選:D.3、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B4、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B5、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點(diǎn)】橢圓的簡(jiǎn)單幾何性質(zhì),雙曲線的簡(jiǎn)單幾何性質(zhì)【易錯(cuò)點(diǎn)睛】計(jì)算橢圓的焦點(diǎn)時(shí),要注意;計(jì)算雙曲線的焦點(diǎn)時(shí),要注意.否則很容易出現(xiàn)錯(cuò)誤6、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.7、B【解析】先將通項(xiàng)公式化簡(jiǎn)然后用裂項(xiàng)相消法求解即可.【詳解】因?yàn)椋?故選:B8、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長(zhǎng)相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:A.9、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號(hào)不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.10、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點(diǎn)且與直線,都相交的直線.綜上所述,過點(diǎn)至多有一條直線與直線,都相交.故選:D.11、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí)有最小值,由得,所以的最小值為.故選:B.12、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由斜截式方程可得切線方程【詳解】解:的導(dǎo)數(shù)為,可得曲線在處的切線斜率為,切點(diǎn)為,即有切線方程為故答案為【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運(yùn)用,考查方程思想,屬于基礎(chǔ)題14、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:15、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因?yàn)?,所以,解得或(舍去).又為銳角三角形,所以.因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因?yàn)橹本€與直線平行,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)利用累加法求通項(xiàng)公式,利用通項(xiàng)公式與前n項(xiàng)和公式的關(guān)系可求的通項(xiàng)公式;(2)求出并判斷其范圍,求出,利用裂項(xiàng)相消法求的前n項(xiàng)和即可證明.【小問1詳解】由題可知,當(dāng)n≥2時(shí),=當(dāng)n=1時(shí),也符合上式,∴;當(dāng)時(shí),,當(dāng)n=1時(shí),也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設(shè)為數(shù)列的前n項(xiàng)和,則.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時(shí)除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式;(2)求得,利用裂項(xiàng)相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時(shí)除以可得且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1)周長(zhǎng)為,面積為7.(2)或.【解析】(1)根據(jù)點(diǎn),求出向量,利用向量的摸公式即可求出的距離,可以求出周長(zhǎng),再利用向量的夾角公式求出夾角的余弦值,根據(jù)平方關(guān)系得到正弦值,再利用即可求解;(2)首先設(shè)出,根據(jù)題意可得出的方程組,解出滿足條件所有的值即可求解.【小問1詳解】由題中條件可知,,,,.所以以為鄰邊的平行四邊形的周長(zhǎng)為.因?yàn)椋驗(yàn)?,所?所以.故以以為鄰邊的平行四邊形的面積為:.【小問2詳解】設(shè),則,,因?yàn)?,且分別與垂直,得,解得或所以向量的坐標(biāo)為或.20、(1);(2)【解析】(1)根據(jù)條件列公差與公比方程組,解得結(jié)果,代入等差數(shù)列通項(xiàng)公式即可;(2)根據(jù)等比數(shù)列求和公式直接求解.【詳解】(1)設(shè)等差數(shù)列公差為,正項(xiàng)等比數(shù)列公比為,因?yàn)?,所以因此;?)數(shù)列的前n項(xiàng)和【點(diǎn)睛】本題考查等差數(shù)列以及等比數(shù)列通項(xiàng)公式、等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題.21、(1);(2)不存在,理由見解析.【解析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無(wú)實(shí)解,故不存在.22、(1)證明見解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質(zhì)證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進(jìn)而得到,即可證得是直角三角形(2)以為原點(diǎn),以所在直線為x軸,過點(diǎn)且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標(biāo)系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問1詳解】證明:如圖所示,連接BD,因?yàn)樗倪呅沃?,可得,,,所以,,則在中,由余弦定理可得,所以,所以因?yàn)槠矫娴酌?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共浴室改造裝修合同范例
- 四方建房合同模板
- 商品廠房出售合同范例
- 企業(yè)擔(dān)保合同范例6
- 商場(chǎng)裝修工程合同模板
- 商用 租房合同模板
- 合同范例 文書送達(dá)方式
- 司機(jī)臨時(shí)用工合同模板
- 單位大廳改造合同范例
- 中藥硫黃銷售合同范例
- 醫(yī)養(yǎng)結(jié)合養(yǎng)老院(養(yǎng)老中心)項(xiàng)目實(shí)施方案
- 焊工施工方案
- 營(yíng)養(yǎng)指導(dǎo)員理論考試題庫(kù)及答案
- 2023秋季學(xué)期國(guó)開電大專本科《法律文書》在線形考(第一至五次考核形考任務(wù))試題及答案
- 遼寧省大連市金普新區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期中化學(xué)試題
- 數(shù)據(jù)清洗課件-第4章-數(shù)據(jù)采集與抽取
- 2023年新改版青島版(六三制)四年級(jí)上冊(cè)科學(xué)全冊(cè)精編知識(shí)點(diǎn)梳理
- 小學(xué)英語(yǔ)-There is an old building in my school教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- GB/T 16935.1-2023低壓供電系統(tǒng)內(nèi)設(shè)備的絕緣配合第1部分:原理、要求和試驗(yàn)
- 臨床微生物學(xué)檢驗(yàn):實(shí)驗(yàn)八 腸道桿菌的檢驗(yàn)(三)
評(píng)論
0/150
提交評(píng)論