版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年安徽省安慶市白澤湖中學高二上數(shù)學期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.2.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.83.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定4.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.命題的否定是()A. B.C. D.6.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.7.下列有關命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題8.已知,為正實數(shù),且,則的最小值為()A. B.C. D.19.數(shù)列,,,,…的一個通項公式為()A. B.C. D.10.瑞士著名數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結(jié)論中正確的有()個A.1 B.2C.3 D.411.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形12.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設O為坐標原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內(nèi)切圓的半徑為,則C的離心率為____________14.過直線上一動點P作圓的兩條切線,切點分別為A,B,則四邊形PACB面積的最小值為______15.設點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________16.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某車間打算購買2臺設備,該設備有一個易損零件,在購買設備時可以額外購買這種易損零件作為備件,價格為每個100元.在設備使用期間,零件損壞,備件不足再臨時購買該零件,價格為每個300元.在使用期間,每臺設備需要更換的零件個數(shù)的分布列為567.表示2臺設備使用期間需更換的零件數(shù),代表購買2臺設備的同時購買易損零件的個數(shù).(1)求的分布列;(2)以購買易損零件所需費用的期望為決策依據(jù),試問在和中,應選哪一個?18.(12分)已知圓,直線(1)當直線與圓相交,求的取值范圍;(2)當直線與圓相交于、兩點,且時,求直線的方程19.(12分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.20.(12分)已知拋物線的焦點為,點在拋物線上,當以為始邊,為終邊的角時,.(1)求的方程(2)過點的直線交于兩點,以為直徑的圓平行于軸的直線相切于點,線段交于點,求的面積與的面積的比值21.(12分)已知函數(shù),當時,函數(shù)有極值1.(1)求函數(shù)的解析式;(2)若關于x的方程有一個實數(shù)根,求實數(shù)m的取值范圍.22.(10分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.2、C【解析】根據(jù)等比數(shù)列的性質(zhì),由題中條件,求出,即可得出結(jié)果.【詳解】因為數(shù)列是等比數(shù)列,由,得,所以,因此.故選:C.3、C【解析】令雙曲線右焦點為,由對稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.4、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.5、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C6、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質(zhì),,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A7、C【解析】對于選項A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.8、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當且僅當時等號成立,故的最小值為1,故選:D.9、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B10、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標,半徑為,圓的的圓心坐標為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A11、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.12、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設,則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設,則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關于x軸對稱,設△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.14、【解析】當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.然后利用點到直線的距離公式求出圓心到直線的距離,再結(jié)合弦長公式和面積公式進行計算即可.【詳解】解:根據(jù)題意可知:當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.圓心到直線的距離為四邊形面積的最小值為故答案為:15、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.16、##【解析】根據(jù)題設及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設,,整理得:,所以,而,故.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2)應選擇.【解析】(1)由每臺設備需更換零件個數(shù)的分布列求出的所有可能值,并求出對應的概率即可得解.(2)分別求出和時購買零件所需費用的期望,比較大小即可作答.【小問1詳解】的可能取值為10,11,12,13,14,,,,,,則的分布列為:10111213140.090.30.370.20.04【小問2詳解】記為當時購買零件所需費用,,,,,元,記為當時購買零件所需費用,,,,元,顯然,所以應選擇.18、(1);(2)或【解析】(1)根據(jù)直線與圓的位置關系,利用幾何法可得出關于實數(shù)的不等式,由此可解得實數(shù)的取值范圍;(2)根據(jù)勾股定理求出圓心到直線的距離,再利用點到直線的距離公式可得出關于實數(shù)的值,即可求出直線的方程.【小問1詳解】解:圓的標準方程為,圓心為,半徑為,因為直線與圓相交,則,解得.【小問2詳解】解:因為,則圓心到直線的距離為,由點到直線的距離公式可得,整理得,解得或.所以,直線的方程為或.19、(1)(2)過定點,定點為【解析】(1)利用拋物線的定義求解;(2)設直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫出線段的中垂線方程求解.【小問1詳解】解:由題意得,,解得=2p,因為點M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標準方程為.【小問2詳解】由已知得,直線的斜率存在且不為0,所以設直線的方程為,與拋物線方程聯(lián)立并消去得:,因為直線與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點為,線段的中垂線方程為,所以線段的中垂線過定點.20、(1)(2)【解析】(1)過點作,垂足為,過點作,垂足為,根據(jù)拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據(jù),求得,設,得到,進而求得,因為為的中點,求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準線方程,如圖所示,過點作,垂足為,過點作,垂足為,因為時,,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設,因為直線的直線過點,設直線的方程為聯(lián)立方程組,整理得,可得,則,因為為的中點,所以,由拋物線的定義得,設圓與直線相切于點,因為交于點,所以且,所以,即,解得,設,則,且,可得,因為,所以點為的中點,所以,又因為為的中點,可得,所以,即的面積與的面積的比值為.21、(1)(2)【解析】(1)根據(jù),可得可得結(jié)果.(2)根據(jù)等價轉(zhuǎn)換的思想,可得,利用導數(shù)研究函數(shù)的單調(diào)性,并比較的極值與的大小關系,可得結(jié)果.【詳解】(1)由,有,又有,解得:,,故函數(shù)的解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- XX村自來水工程可行性研究報告(正文)
- 農(nóng)村一二三產(chǎn)業(yè)融合發(fā)展先導區(qū)項目可行性研究報告
- 室內(nèi)設計行業(yè)市場發(fā)展現(xiàn)狀及趨勢與投資分析研究報告
- 經(jīng)營壓敏膠特種膠帶行業(yè)深度研究報告
- 2025年中國火鍋桌行業(yè)競爭格局分析及投資戰(zhàn)略咨詢報告
- 2020-2025年中國奧特萊斯開發(fā)與運營市場前景預測及投資規(guī)劃研究報告
- 陽江程村鎮(zhèn)新湖水庫飲用水水源保護區(qū)調(diào)整可行性研究報告
- 拳擊場行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年中國耳鼻喉科用藥行業(yè)市場全景評估及投資前景展望報告
- 棕剛玉項目可行性研究報告
- 2024中考語文《水滸傳》歷年真題(解析版)
- 接地電阻測試儀的操作課件
- 《機修工基礎培訓》課件
- 品質(zhì)黃燜雞加盟活動策劃
- DLT 754-2013 母線焊接技術規(guī)程
- 部編版小學道德與法治五年級上冊單元復習課件(全冊)
- 仙桃市仙桃市2023-2024學年七年級上學期期末數(shù)學檢測卷(含答案)
- 智慧農(nóng)場整體建設實施方案
- 航空公司個人年終總結(jié)(共12篇)
- 產(chǎn)品供貨方案、售后服務方案
- 蘇教版小學數(shù)學六年級上冊第4單元解決問題的策略重難點練習【含答案】
評論
0/150
提交評論