2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁(yè)
2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁(yè)
2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁(yè)
2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁(yè)
2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年安徽省蚌埠市田家炳中學(xué)、五中高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.函數(shù)的值域?yàn)椋ǎ〢. B.C. D.3.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡(jiǎn)稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.4.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.5.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A. B.1C. D.6.中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點(diǎn)都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.7.設(shè),,若,其中是自然對(duì)數(shù)底,則()A. B.C. D.8.《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個(gè)節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長(zhǎng)為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸9.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長(zhǎng)為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.10.已知點(diǎn)在平面內(nèi),是平面的一個(gè)法向量,則下列各點(diǎn)在平面內(nèi)的是()A. B.C. D.11.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則12.已知條件:,條件:表示一個(gè)橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)為橢圓上的一動(dòng)點(diǎn),則點(diǎn)到直線的距離的最小值為___________.14.已知函數(shù)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________.15.已知實(shí)數(shù),滿足,則的最大值為______.16.已知空間直角坐標(biāo)系中,點(diǎn),,若,與同向,則向量的坐標(biāo)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點(diǎn),F(xiàn)為PC上一點(diǎn),且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值18.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在時(shí)的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.19.(12分)已知函數(shù)在處取得極值(1)求實(shí)數(shù)a的值;(2)若函數(shù)在內(nèi)有零點(diǎn),求實(shí)數(shù)b的取值范圍20.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點(diǎn),且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.21.(12分)如圖,直四棱柱中,底面是邊長(zhǎng)為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.22.(10分)已知在△中,角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分析可知直線與曲線在上的圖象有兩個(gè)交點(diǎn),令可得出,令,問題轉(zhuǎn)化為直線與曲線有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可得出實(shí)數(shù)的取值范圍.【詳解】當(dāng)時(shí),,,此時(shí)兩個(gè)函數(shù)的圖象無交點(diǎn);當(dāng)時(shí),由得,可得,令,其中,則直線與曲線有兩個(gè)交點(diǎn),,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,則,且當(dāng)時(shí),,作出直線與曲線如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個(gè)不同的交點(diǎn).故選:A.2、C【解析】根據(jù)基本不等式即可求出【詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以函數(shù)的值域?yàn)楣蔬x:C3、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A4、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個(gè)選項(xiàng).【詳解】因?yàn)閏>d,所以,所以,所以B正確;時(shí),不滿足選項(xiàng)A;時(shí),,且,所以不滿足選項(xiàng)CD;故選:B5、D【解析】,,所以拋物線的焦點(diǎn)到其準(zhǔn)線的距離是,故選D.6、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率;故選:D7、A【解析】利用函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】令,因?yàn)榫鶠椋蕿樯系脑龊瘮?shù),由可得,故,故選:A.8、D【解析】結(jié)合等差數(shù)列知識(shí)求得正確答案.【詳解】設(shè)冬至日影長(zhǎng),公差為,則,所以立夏日影長(zhǎng)丈,即四尺五寸.故選:D9、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長(zhǎng)為,則其面積為.陰影部分面積為,故所求概率為.故選:D10、B【解析】設(shè)平面內(nèi)的一點(diǎn)為,由可得,進(jìn)而可得滿足的方程,將選項(xiàng)代入檢驗(yàn)即可得正確選項(xiàng).【詳解】設(shè)平面內(nèi)的一點(diǎn)為(不與點(diǎn)重合),則,因?yàn)槭瞧矫娴囊粋€(gè)法向量,所以,所以,即,對(duì)于A:,故選項(xiàng)A不正確;對(duì)于B:,故選項(xiàng)B正確;對(duì)于C:,故選項(xiàng)C不正確;對(duì)于D:,故選項(xiàng)D不正確,故選:B.11、B【解析】A.運(yùn)用線面平行的性質(zhì),結(jié)合線線的位置關(guān)系,即可判斷;B.運(yùn)用線面垂直的性質(zhì),即可判斷;C.運(yùn)用線面垂直的性質(zhì),結(jié)合線線垂直和線面平行的位置即可判斷;D.運(yùn)用線面平行的性質(zhì)和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯(cuò);B.若m⊥α,,由線面垂直的性質(zhì)定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯(cuò);D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯(cuò)故選B【點(diǎn)睛】本題考查空間直線與平面的位置關(guān)系,考查直線與平面的平行、垂直的判斷與性質(zhì),記熟定理是解題的關(guān)鍵,注意觀察空間的直線與平面的模型12、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個(gè)圓,充分性不成立;而表示一個(gè)橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)與平行的直線與相切,求解出此時(shí)的方程,則點(diǎn)到直線距離的最大值可根據(jù)平行直線間的距離公式求解出.【詳解】設(shè)與平行的直線,當(dāng)與橢圓相切時(shí)有:,所以,所以,所以,由題意取時(shí),到直線的距離較小此時(shí)與(即)的距離為,所以點(diǎn)到直線距離的最小值為,故答案為:.14、【解析】函數(shù)有兩個(gè)不同零點(diǎn)即y=a與g(x)=圖像有兩個(gè)交點(diǎn),畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個(gè)不同的零點(diǎn),令,則y=a與g(x)=圖像有兩個(gè)交點(diǎn),∵,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,∴當(dāng)時(shí),,作出函數(shù)與的圖象,∴當(dāng)時(shí),y=a與g(x)有兩個(gè)交點(diǎn)﹒故答案為:﹒15、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點(diǎn),則取得最大值為.故答案為:【點(diǎn)睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無誤作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)直線時(shí),要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會(huì)在可行域的端點(diǎn)或邊界上取得.16、【解析】求出坐標(biāo),根據(jù)給條件表示出坐標(biāo),利用向量模的坐標(biāo)表示計(jì)算作答.【詳解】因,,則,因與同向,則設(shè),因此,,于是得,解得,則,所以向量的坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標(biāo)系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因?yàn)槠矫?,平面,平面,則,,又,因?yàn)?,,平面,所以平面,故以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因?yàn)?,設(shè)平面的法向量為,則,即,令,則,,故,因?yàn)榈酌?,所以的一個(gè)法向量為,所以,故平面與平面夾角的余弦值為18、(1)最大值為9,最小值為;(2).【解析】(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而確定在的極值、端點(diǎn)值,比較它們的大小即可知最值.(2)討論參數(shù)a的符號(hào),利用導(dǎo)數(shù)研究的單調(diào)性,結(jié)合已知區(qū)間的極值情況求參數(shù)a的范圍即可.【小問1詳解】由題,時(shí),,則,令,得或1,則時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.∴在時(shí)取極大值,在時(shí)取極小值,又,,綜上,在區(qū)間上取得的最大值為9,最小值為.小問2詳解】,且,當(dāng)時(shí),單調(diào)遞增,函數(shù)沒有極值;當(dāng)時(shí),時(shí),單調(diào)遞增;時(shí),單調(diào)遞減;時(shí),,單調(diào)遞增.∴在取得極大值,在取得極小值,則;當(dāng)時(shí),時(shí),單調(diào)遞增;時(shí),單調(diào)遞減;時(shí),,單調(diào)遞增.∴在取得極大值,在取得極小值,由得:.綜上,函數(shù)在區(qū)間存在極小值時(shí)a的取值范圍是.19、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對(duì)函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點(diǎn),只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗(yàn)證時(shí),在處取得極值(2)由(1)知,∴極值點(diǎn)為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點(diǎn),只需∴20、(1);(2).【解析】(1)設(shè)圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點(diǎn)到直線的距離公式可求得答案.【詳解】解:(1)設(shè)圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點(diǎn)到直線的距離所以,四邊形面積的最小值為.21、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點(diǎn),∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因?yàn)槠矫?,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論