版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年海南省??谑腥A僑中學高二數(shù)學第一學期期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則在上的投影向量為()A.1 B.C. D.2.已知點是橢圓方程上的動點,、是直線上的兩個動點,且滿足,則()A.存在實數(shù)使為等腰直角三角形的點僅有一個B.存在實數(shù)使為等腰直角三角形的點僅有兩個C.存在實數(shù)使為等腰直角三角形的點僅有三個D.存在實數(shù)使為等腰直角三角形的點有無數(shù)個3.如果,那么下面一定成立的是()A. B.C. D.4.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.25.若函數(shù),滿足且,則()A.1 B.2C.3 D.46.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯(lián),蘊含著中華文化的豐富內涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.367.在數(shù)列中,,則等于A. B.C. D.8.在公比為的等比數(shù)列中,前項和,則()A.1 B.2C.3 D.49.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.10.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結論中,正確結論的序號是A.①②③ B.②④C.③④ D.②③④11.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上12.若在直線上,則直線的一個方向向量為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知方程,若此方程表示橢圓,則實數(shù)的取值范圍是________;若此方程表示雙曲線,則實數(shù)的取值范圍是________.14.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.15.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.16.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.18.(12分)如圖,正三棱柱中,D是的中點,.(1)求點C到平面的距離;(2)試判斷與平面的位置關系,并證明你的結論.19.(12分)已知函數(shù)(1)解不等式;(2)若不等式對恒成立,求實數(shù)m的取值范圍20.(12分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標準方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標21.(12分)已知數(shù)列為各項均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和22.(10分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點為,雙曲線C的左、右頂點分別為A,B(1)求雙曲線C的方程;(2)過右焦點F的直線l與雙曲線C的右支交于P,Q兩點(點P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意得,進而根據(jù)投影向量的概念求解即可.【詳解】解:因為,,所以,所以,所以在上的投影向量為故選:C2、B【解析】求出點到直線的距離的取值范圍,對點是否為直角頂點進行分類討論,確定、的等量關系,綜合可得出結論.【詳解】設點,則點到直線的距離為.因為橢圓與直線均關于原點對稱,①若為直角頂點,則.當時,此時,不可能是等腰直角三角形;當時,此時,滿足是等腰直角三角形的直角頂點有兩個;當時,此時,滿足是等腰直角三角形的直角頂點有四個;②若不是直角頂點,則.當時,滿足是等腰直角三角形的非直角頂點不存在;當時,滿足是等腰直角三角形的非直角頂點有兩個;當時,滿足是等腰直角三角形非直角頂點有四個.綜上所述,當時,滿足是等腰直角三角形的點有八個;當時,滿足是等腰直角三角形的點有六個;當時,滿足是等腰直角三角形的點有四個;當時,滿足是等腰直角三角形的點有兩個;當時,滿足是等腰直角三角形的點不存在.故選:B.3、C【解析】根據(jù)不等式的基本性質,以及特例法和作差比較法,逐項計算,即可求解.【詳解】對于A中,當時,,所以不正確;對于B中,因為,根據(jù)不等式的性質,可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.4、C【解析】設的首項為,把已知的兩式相減即得解.【詳解】解:設的首項為,根據(jù)題意得,兩式相減得.故選:C5、C【解析】先取,得與之間的關系,然后根據(jù)導數(shù)的運算直接求導,代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C6、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.7、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律8、C【解析】先利用和的關系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.9、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設到平面的距離為,由得,解得故選:B10、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應關系,本題屬于容易題.11、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C12、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】分別根據(jù)橢圓、雙曲線的標準方程的特征建立不等式即可求解.【詳解】當方程表示橢圓時,則有且,所以的取值范圍是;當方程表示雙曲線時,則有或,所以的取值范圍是.故答案為:;14、【解析】設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、常考題型.15、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.16、【解析】取的中點為,連接,由面面角的定義得出二面角的平面角為,再結合等腰直角三角形的性質得出二面角的大小.【詳解】取的中點為,連接,因為,所以二面角的平面角為,因為,,所以為等腰直角三角形,即二面角的大小為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)且(2)【解析】(1)由條件可得,解出即可;(2)由條件可得,解出即可.【小問1詳解】若表示焦點在軸上橢圓,則,解得且【小問2詳解】若表示焦點在軸上且焦距為的雙曲線,則,解得18、(1)(2)平行,證明過程見解析.【解析】(1)利用等體積法即可求解;(2)利用線面平行判定即可求解.【小問1詳解】解:正三棱柱中,D是的中點,所以,,正三棱柱中,所以又因為正三棱柱中,側面平面且交線為且平面中,所以平面又平面所以設點C到平面的距離為在三棱錐中,即所以點C到平面的距離為.【小問2詳解】與平面的位置,證明如下:連接交于點,連接,如下圖所示,因為正三棱柱的側面為矩形所以為的中點又因為為中點所以為的中位線所以又因為平面,且平面所以平面19、(1)(2)【解析】(1)移項,兩邊平方即可獲解;(2)利用絕對值不等式即可.【小問1詳解】即即,即即即或所以不等式的解集為【小問2詳解】由題知對恒成立因為.所以,解得即或,所以實數(shù)的取值范為20、(1);(2)見解析,定點【解析】(1)先判斷圓經過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2)設在軸上存在定點,使得為定值,根據(jù)題意,設直線的方程為,聯(lián)立可得,再運算將韋達定理代入化簡有與k無關即可.【詳解】(1)由圓方程中的時,的兩根不為相反數(shù),故可設圓經過橢圓的上、下頂點和右頂點,令圓方程中的,得,即有又,解得∴橢圓的標準方程為(2)證明:設在軸上存在定點,使得為定值,由(1)可得,設直線的方程為,聯(lián)立可得,設,則,,要使為定值,只需,解得∴在軸上存在定點,使得為定值,定點的坐標為【點睛】本題主要考查橢圓的幾何性質和直線與橢圓的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.21、(1)(2)【解析】(1)利用等比數(shù)列通項公式列出方程組,可求解,,從而寫出;(2)化簡數(shù)列,裂項相消法求和即可.【小問1詳解】設數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴22、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設直線方程與雙曲線方程聯(lián)立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)匯編職員管理篇
- 單位管理制度呈現(xiàn)大全人員管理篇
- 藝術節(jié)主持詞
- 70MW光伏發(fā)電項目工程(EPC)總承包投標文件 承包人實施計劃
- 《市場營銷學導言》課件
- 《天貓規(guī)則學習》課件
- 空調維修公司保安工作總結
- 財務工作品質提升總結
- 兒童新媒體編輯工作總結
- 2003年廣東高考語文真題及答案
- 血氣分析及臨床應用
- 光纜布線工程施工組織設計方案
- 食堂日常考核評分表(后勤)
- 高頻淬火設備安全操作規(guī)程
- 閘閥的操作力矩參考表
- 浙江省市政工程安全臺賬完整
- 環(huán)氧樹脂參考配方大全
- 花木綠化養(yǎng)護考核評分表
- #2鍋爐爐膛內腳手架搭設及拆除施工方案
- 110KV變電站工程創(chuàng)優(yōu)監(jiān)理實施細則
- 教材中醫(yī)方劑學
評論
0/150
提交評論