2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖北省襄州區(qū)四校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.2.若公差不為0的等差數(shù)列的前n項(xiàng)和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.123.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥4.饕餮紋是青銅器上常見的花紋之一,最早見于長江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個(gè)小方格的邊長為一個(gè)單位長度,有一點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長度,且向右或向下跳是等可能的,那么點(diǎn)經(jīng)過3次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.5.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.下列說法正確的個(gè)數(shù)有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)7.已知雙曲線的左、右焦點(diǎn)分別為,,P為雙曲線C上一點(diǎn),,直線與y軸交于點(diǎn)Q,若,則雙曲線C的漸近線方程為()A. B.C. D.8.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-19.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)為()A. B.C. D.10.已知空間三點(diǎn),,在一條直線上,則實(shí)數(shù)的值是()A.2 B.4C.-4 D.-211.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A.1 B.3C.9 D.8112.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是________14.某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)、下午4節(jié)),分別安排語文、數(shù)學(xué)、英語、物理、化學(xué)、生物、政治、歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有______15.在正方體中,二面角的大小為__________(用反三角表示)16.已知雙曲線(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1且傾斜角為的直線l與雙曲線的左、右支分別交于點(diǎn)A,B.且|AF2|=|BF2|,則該雙曲線的離心率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,,再從①;②;③這三個(gè)條件中選擇___________,___________兩個(gè)作為已知.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知,,分別是銳角內(nèi)角,,的對(duì)邊,,.(1)求的值;(2)若的面積為,求的值.19.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.20.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的極值;(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)a的取值范圍21.(12分)已知三點(diǎn)共線,其中是數(shù)列中的第n項(xiàng).(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知函數(shù),其中,.(1)當(dāng)時(shí),求曲線在點(diǎn)處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)或且非命題的真假進(jìn)行判斷即可.【詳解】當(dāng),故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A2、C【解析】設(shè)等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項(xiàng)和公差,再利用前n項(xiàng)和公式求解.【詳解】設(shè)等差數(shù)列的公差為d,因?yàn)?,且,,為等比?shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C3、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因?yàn)?,所以,所以故選:A4、B【解析】利用古典概型的概率求解.【詳解】解:點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動(dòng)后,恰好是沿著饕餮紋的路線到達(dá)點(diǎn)B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B5、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A6、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B7、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進(jìn)而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點(diǎn),∴,又,為的中點(diǎn),∴,即,∴雙曲線C的漸近線方程為.故選:B.8、C【解析】先通過復(fù)數(shù)的除法運(yùn)算求出z,進(jìn)而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.9、D【解析】由復(fù)數(shù)除法求得后可得其共軛復(fù)數(shù)【詳解】由題意,∴故選:D10、C【解析】根據(jù)三點(diǎn)在一條直線上,利用向量共線原理,解出實(shí)數(shù)的值.【詳解】解:因?yàn)榭臻g三點(diǎn),,在一條直線上,所以,故.所以.故選:C.【點(diǎn)睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.11、A【解析】根據(jù)條件,利用橢圓標(biāo)準(zhǔn)方程中長半軸長a,短半軸長b,半焦距c關(guān)系列式計(jì)算即得.【詳解】由橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則半焦距c=2,于是得,解得,所以值為1.故選:A12、B【解析】以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運(yùn)算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點(diǎn)睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標(biāo)準(zhǔn)形式,從而得到準(zhǔn)線方程.【詳解】拋物線方程可化為:拋物線準(zhǔn)線方程為:故答案為【點(diǎn)睛】本題考查拋物線準(zhǔn)線的求解,易錯(cuò)點(diǎn)是未將拋物線方程化為標(biāo)準(zhǔn)方程.14、2400種【解析】分三步,第一步:根據(jù)題意從第一個(gè)位置和最后一個(gè)位置選一個(gè)位置安排生物,第二步:將數(shù)學(xué)和英語捆綁排列,第三步:將剩下的5節(jié)課全排列,最后利用分步乘法計(jì)數(shù)原理求解.【詳解】分步排列,第一步:因?yàn)橛深}意知生物只能出現(xiàn)在第一節(jié)或最后一節(jié),所以從第一個(gè)位置和最后一個(gè)位置選一個(gè)位置安排生物,有(種)編排方法;第二步:因?yàn)閿?shù)學(xué)和英語在安排時(shí)必須相鄰,注意數(shù)學(xué)和英語之間還有一個(gè)排列,所以有(種)編排方法;第三步:剩下的5節(jié)課安排5科課程,有(種)編排方法根據(jù)分步乘法計(jì)數(shù)原理知共有(種)編排方法故答案為:2400種15、【解析】作出二面角的平面角,并計(jì)算出二面角的大小.【詳解】設(shè),畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:16、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關(guān)系,再由離心率公式可得所求值【詳解】過F2作F2N⊥AB于點(diǎn)N,設(shè)|AF2|=|BF2|=m,因?yàn)橹本€l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項(xiàng)公式.(2)利用公式法可求數(shù)列的前項(xiàng)和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項(xiàng)和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項(xiàng)和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項(xiàng)和為,由(1)可知.【點(diǎn)睛】方法點(diǎn)睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運(yùn)用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題18、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.19、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過計(jì)算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因?yàn)?,,,所以,,所以,,,平面,平面,所以平?證明法二:因?yàn)槠矫?,平面,所以,又因?yàn)?,即,,平面,平面,所以平?(2)由(1)知平面的一個(gè)法向量,設(shè)平面的法向量,又,,且所以所以平面的一個(gè)法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)極大值;極小值(2)【解析】(1)利用導(dǎo)數(shù)來求得的極大值和極小值.(2)由不等式分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得的取值范圍.【小問1詳解】當(dāng)時(shí),,,令,可得或2所以在區(qū)間遞增;在區(qū)間遞減.故當(dāng)時(shí).函數(shù)有極大值,故當(dāng)時(shí),函數(shù)有極小值;【小問2詳解】由,有,可化為,令,有,令,有,令,可得,可得函數(shù)的增區(qū)間為,減區(qū)間為,有,可知,有函數(shù)為減函數(shù),有,故當(dāng)時(shí),若恒成立,則實(shí)數(shù)a的取值范圍為【點(diǎn)睛】求解不等式恒成立問題,可利用分離常數(shù)法,結(jié)合導(dǎo)數(shù)求最值來求解.在利用導(dǎo)數(shù)研究函數(shù)的過程中,如果一階導(dǎo)數(shù)無法解決,可考慮利用二階導(dǎo)數(shù)來進(jìn)行求解.21、(1)(2)【解析】(1)由三點(diǎn)共線可知斜率相等,即可得出答案;(2)由題可得,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論