版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年湖北省孝感市漢川市漢川二中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個(gè)正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個(gè)側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()A. B.C. D.3.在數(shù)列中,,則()A.2 B.C. D.4.點(diǎn)分別為橢圓左右兩個(gè)焦點(diǎn),過的直線交橢圓與兩點(diǎn),則的周長為()A.32 B.16C.8 D.45.已知等比數(shù)列中,,,則公比()A. B.C. D.6.設(shè)函數(shù),若的整數(shù)有且僅有兩個(gè),則的取值范圍是()A. B.C. D.7.設(shè)等比數(shù)列,有下列四個(gè)命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個(gè)數(shù)是()A.1 B.2C.3 D.48.等差數(shù)列中,若,則()A.42 B.45C.48 D.519.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.410.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點(diǎn)平分的弦所在的直線方程為⑤已知過點(diǎn)的直線與圓的交點(diǎn)個(gè)數(shù)有2個(gè).A.①③④ B.②③④C.①③⑤ D.①②⑤11.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.12.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓關(guān)于直線對(duì)稱,則________14.函數(shù)單調(diào)增區(qū)間為______.15.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時(shí)每步隨機(jī)選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.16.?dāng)?shù)列滿足,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和圓外一點(diǎn),過點(diǎn)作圓的切線,切線長為.(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.18.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.19.(12分)已知函數(shù)(a為常數(shù))(1)討論函數(shù)的單調(diào)性;(2)不等式在上恒成立,求實(shí)數(shù)a的取值范圍.20.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說明理由21.(12分)在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且(1)求數(shù)列的通項(xiàng)公式;(2)求的值22.(10分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A2、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:C【點(diǎn)晴】本題主要考查正四棱錐的概念及其有關(guān)計(jì)算,考查學(xué)生的數(shù)學(xué)計(jì)算能力,是一道容易題.3、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D4、B【解析】由題意結(jié)合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B5、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.6、D【解析】等價(jià)于,令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,作出的簡(jiǎn)圖,數(shù)形結(jié)合只需滿足即可.【詳解】,即,又,則.令,,,當(dāng)時(shí),,時(shí),,時(shí),,在單調(diào)遞減,在單調(diào)遞增,且,且,,作出函數(shù)圖象如圖所示,若的整數(shù)有且僅有兩個(gè),即只需滿足,即,解得:故選:D7、C【解析】根據(jù)等比數(shù)列的性質(zhì)對(duì)四個(gè)命題逐一分析,由此確定正確命題的個(gè)數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯(cuò)誤故選C.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.8、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C9、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)?,所以,所?故選:C10、C【解析】求出兩直線垂直時(shí)m值判斷①;由復(fù)合命題真值表可判斷②;化簡(jiǎn)不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗(yàn)證判斷④;判定點(diǎn)與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個(gè)是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點(diǎn),④不正確;點(diǎn)在圓上,則直線與圓至少有一個(gè)公共點(diǎn),而過點(diǎn)與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個(gè)交點(diǎn),⑤正確,所以所有真命題的序號(hào)是①③⑤.故選:C11、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.12、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)題意,圓心在直線上,進(jìn)而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.14、【解析】利用導(dǎo)數(shù)法求解.【詳解】因?yàn)楹瘮?shù),所以,當(dāng)時(shí),,所以的單調(diào)增區(qū)間是,故答案為:15、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計(jì)算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:16、【解析】對(duì)遞推關(guān)系多遞推一次,再相減,可得,再驗(yàn)證是否滿足;【詳解】∵①時(shí),②①-②得,時(shí),滿足上式,.故答案為:.【點(diǎn)睛】數(shù)列中碰到遞推關(guān)系問題,經(jīng)常利用多遞推一次再相減的思想方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,公共弦長為【解析】(1)根據(jù)切線長公式計(jì)算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長公式計(jì)算即可.【小問1詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由題意得圓的圓心,半徑,圓的圓心,半徑,因?yàn)?,,所以圓和圓相交.設(shè)兩圓相交于,兩點(diǎn),則兩圓的方程相減得直線的方程為,圓心到直線的距離.所以,所以兩圓的公共弦長為.18、(1),;(2)最大值為,最小值為【解析】(1)對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構(gòu)造一個(gè)關(guān)于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導(dǎo)數(shù)研究函數(shù)在上的單調(diào)性,比較極值和端點(diǎn)值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域?yàn)?,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調(diào)遞減單調(diào)遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點(diǎn)睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內(nèi)的最值問題,考查利用導(dǎo)函數(shù)研究函數(shù)在給定閉區(qū)間內(nèi)的單調(diào)性,以及通過比較極值和端點(diǎn)值確定函數(shù)在閉區(qū)間內(nèi)的最值,考查運(yùn)算能力.19、(1)當(dāng)時(shí),在定義域上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)求出的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間即得解;(2)問題轉(zhuǎn)化為,,,令,求出的最大值,從而求出的范圍即得解【詳解】解:(1)函數(shù)的定義域?yàn)椋?,①?dāng)時(shí),,,,在定義域上單調(diào)遞增②當(dāng)時(shí),若,則,在上單調(diào)遞增;若,則,在上單調(diào)遞減綜上所述,當(dāng)時(shí),在定義域上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減(2)當(dāng)時(shí),,不等式在,上恒成立,,,,令,,,,在,上單調(diào)遞增,(1),,的范圍為,20、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長,求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.21、(1)(2)【解析】(1)若選①可得,從而得到,即可得到是常數(shù)列,即可求出數(shù)列的通項(xiàng)公式;若選②,根據(jù),作差即可得到,再利用累乘法計(jì)算可得;若選③:可得,即可得到數(shù)列是等差數(shù)列,首項(xiàng)為2,公差為1,從而求出數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用裂項(xiàng)相消法計(jì)算可得;【小問1詳解】解:選①:∵即∴即∴數(shù)列是常數(shù)列∴∴選②:∵∴時(shí),則即∴∴當(dāng)時(shí),也滿足,∴選③:因?yàn)椋?,所以?shù)列是等差數(shù)列,首項(xiàng)為2,公差為1則∴【小問2詳解】解:由(1)可得,∴22、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年遠(yuǎn)程教育中《認(rèn)識(shí)計(jì)算機(jī)》課件的新挑戰(zhàn)
- 2024校園各類協(xié)議管理細(xì)則整合
- 電纜敷設(shè)項(xiàng)目2024年度承包協(xié)議
- 統(tǒng)編版五年級(jí)下冊(cè)語文第二單元復(fù)習(xí)卷
- 2024年房產(chǎn)租賃市場(chǎng)保密協(xié)議模板
- 2024年動(dòng)遷房產(chǎn)買賣協(xié)議例文
- 農(nóng)行的合同范本
- 電學(xué)知識(shí)講解模板
- 房產(chǎn)代管出租協(xié)議模板2024年
- 自然素描教學(xué)講座模板
- 2024年深圳公司試用期員工勞動(dòng)合同范文(二篇)
- QBT 102T-2023 甜菜糖廠設(shè)計(jì)規(guī)范 (正式版)
- 2023年上海市閔行區(qū)中考二模語文試卷含詳解
- 2024年山東濟(jì)南新舊動(dòng)能轉(zhuǎn)換起步區(qū)專職網(wǎng)格員招聘筆試沖刺題(帶答案解析)
- 2024仁愛版初中英語單詞表(七-九年級(jí))中考復(fù)習(xí)必背
- 國家開放大學(xué)《理工英語3》章節(jié)測(cè)試參考答案
- 智能手機(jī)維修技術(shù)第二版全套教學(xué)課件
- 項(xiàng)目申報(bào)書(模板)(高校)
- 教科版五年級(jí)科學(xué)上冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 三只松鼠客戶關(guān)系管理
- XX電站接地裝置的熱穩(wěn)定校驗(yàn)報(bào)告(220kV)
評(píng)論
0/150
提交評(píng)論