2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省天水第一中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的大小關(guān)系為()A. B.C. D.2.若橢圓與直線交于兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則A. B.C. D.23.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.4.直線分別與軸,軸交于A,B兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是()A B.C. D.5.設(shè)命題,則為A. B.C. D.6.集合,則集合A的子集個數(shù)為()A.2個 B.4個C.8個 D.16個7.若(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.直線的傾斜角的取值范圍是()A. B.C. D.9.下列通項(xiàng)公式中,對應(yīng)數(shù)列是遞增數(shù)列的是()A B.C. D.10.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.11.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?312.過,兩點(diǎn)的直線的一個方向向量為,則()A.2 B.2C.1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實(shí)數(shù)使得成立,則的取值范圍是__________.14.已知是等差數(shù)列,,,設(shè),數(shù)列前n項(xiàng)的和為,則______15.已知空間向量,,,若,,共面,則實(shí)數(shù)___________.16.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的方程為,點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)(1)求△OAB面積的最小值(為坐標(biāo)原點(diǎn));(2)是否為定值?若是,求出該定值;若不是,說明理由18.(12分)某雙曲線型自然冷卻通風(fēng)塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點(diǎn)分別為、.已知該冷卻通風(fēng)塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標(biāo)系的基礎(chǔ)上,保持原點(diǎn)和x軸、y軸不變,建立空間直角坐標(biāo)系,如圖3所示.在上口圓上任取一點(diǎn),在下口圓上任取一點(diǎn).請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點(diǎn)P、Q,使得P、A、Q三點(diǎn)共線.若不存在,請說明理由;若存在,求出點(diǎn)P、Q的坐標(biāo),并證明此時線段PQ上任意一點(diǎn)都在曲面上.19.(12分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和的最大值.20.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點(diǎn),且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設(shè)P是直線3x+4y+8=0上的動點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.21.(12分)設(shè)數(shù)列滿足,數(shù)列的前項(xiàng)和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè),若對任意正整數(shù),當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在直三棱柱中,,,與交于點(diǎn),為的中點(diǎn),(1)求證:平面;(2)求證:平面平面

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B2、D【解析】細(xì)查題意,把代入橢圓方程,得,整理得出,設(shè)出點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點(diǎn)坐標(biāo),再由過原點(diǎn)與線段的中點(diǎn)的直線的斜率為,進(jìn)而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點(diǎn)的橫坐標(biāo)為,縱坐標(biāo),因?yàn)檫^原點(diǎn)與線段中點(diǎn)的直線的斜率為,所以,所以,故選D.【點(diǎn)睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識點(diǎn)有直線與橢圓相交時對應(yīng)的解題策略,中點(diǎn)坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.3、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B4、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點(diǎn)到直線的距離.【詳解】與x,y軸的交點(diǎn),分別為,,點(diǎn)在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A5、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項(xiàng)為C.6、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因?yàn)?,所?時,,時,,時,,時,,所以集合,所以的子集的個數(shù)為,故選:C.7、A【解析】根據(jù)復(fù)數(shù)運(yùn)算法則求出z=a+bi形式,根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】,z對應(yīng)的點(diǎn)在第一象限.故選:A8、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.9、C【解析】根據(jù)數(shù)列單調(diào)性的定義逐項(xiàng)判斷即可.【詳解】對于A,B選項(xiàng)對應(yīng)數(shù)列是遞減數(shù)列.對于C選項(xiàng),,故數(shù)列是遞增數(shù)列.對于D選項(xiàng),由于.所以數(shù)列不是遞增數(shù)列故選:C.10、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D11、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時,取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時,取得最大值,由,得,即,所以的最大值為,故選:B12、C【解析】應(yīng)用向量的坐標(biāo)表示求的坐標(biāo),由且列方程求y值.【詳解】由題設(shè),,則且,所以,即,可得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將變形為,令,,分別研究其單調(diào)性及值域,使問題轉(zhuǎn)化為即可.【詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實(shí)數(shù)使得成立,即存在實(shí)數(shù)使得成立,即存在實(shí)數(shù)使得恒成立所以,即,解得,所以取值范圍為.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題關(guān)鍵是將所求問題轉(zhuǎn)為存在實(shí)數(shù)使得恒成立,結(jié)合的值域進(jìn)一步轉(zhuǎn)化為存在實(shí)數(shù)使得恒成立,再只需即可.14、-3033【解析】先求得,進(jìn)而得到,再利用并項(xiàng)法求解.【詳解】解:因?yàn)槭堑炔顢?shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303315、1【解析】根據(jù)向量共面,可設(shè),先求解出的值,則的值可求.【詳解】因?yàn)?,,共面且,不共線,所以可設(shè),所以,所以,所以,所以,故答案為:1.16、4【解析】∵y′=3x2+2ax+b,∴或當(dāng)a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)是,該定值.【解析】(1)根據(jù)弦長公式、點(diǎn)到直線距離公式,結(jié)合三角形面積公式進(jìn)行求解即可;(2)根據(jù)兩點(diǎn)間距離公式,結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】顯然直線存在斜率,設(shè)直線的方程為:,所以有,設(shè),則有,,原點(diǎn)到直線的距離為:,△OAB的面積為:,當(dāng)時,有最小值,最小值為;【小問2詳解】是定值,理由如下:由(1)可知:,,【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.18、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標(biāo)準(zhǔn)方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點(diǎn)的特征證明點(diǎn)在曲面上;【小問1詳解】設(shè)雙曲線的標(biāo)準(zhǔn)方程為,由題意知,點(diǎn),的橫坐標(biāo)分別為,,則設(shè)點(diǎn),的坐標(biāo)為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點(diǎn)在圓上,;點(diǎn)在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點(diǎn)P、Q,使得P、A、Q三點(diǎn)共線.由點(diǎn)在半徑為的圓上,(為參數(shù));點(diǎn)在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當(dāng)時,,當(dāng)時,證明:,則,利用,,其中又曲面上的每一點(diǎn)可以是圓與旋轉(zhuǎn)任意坐標(biāo)系上的雙曲線的交點(diǎn),旋轉(zhuǎn)直角坐標(biāo)系,保持原點(diǎn)和y軸不變,點(diǎn)所在的軸為軸,此時,滿足,即即點(diǎn)是曲面上的點(diǎn).19、(1);(2)30.【解析】(1)設(shè)出等差數(shù)列的公差,由已知列式求得公差,進(jìn)一步求出首項(xiàng),代入等差數(shù)列的通項(xiàng)公式求數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列求和公式求和,再利用二次函數(shù)求得最值即可.【詳解】解:(1)由題意得,數(shù)列公差為,則解得:,∴(2)由(1)可得,∴∵,∴當(dāng)或時,取得最大值【點(diǎn)睛】本題考查利用基本量求解等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和及最值,屬基礎(chǔ)題20、(1);(2).【解析】(1)設(shè)圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點(diǎn)到直線的距離公式可求得答案.【詳解】解:(1)設(shè)圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點(diǎn)到直線的距離所以,四邊形面積的最小值為.21、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項(xiàng)公式后利用累加法即可求的通項(xiàng)公式;(2)裂項(xiàng)相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時,得到,∴,當(dāng)時,是以4為首項(xiàng),2為公差的等差數(shù)列∴當(dāng)時,當(dāng)時,也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對任意正整數(shù),當(dāng)時,恒成立,得,即在時恒成立,,解得t<0或t>3.22、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論