版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年息烽縣第一中學數(shù)學高二上期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.2.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數(shù)為()A.0 B.1C.2 D.34.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.35.下列說法正確的有()個.①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項.A.1 B.2C.3 D.06.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.7.已知函數(shù),則()A. B.0C. D.18.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.9.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.10.中國明代商人程大位對文學和數(shù)學頗感興趣,他于60歲時完成杰作《直指算法統(tǒng)宗》.這是一本風行東亞的數(shù)學名著,該書A.76石 B.77石C.78石 D.79石11.已知為偶函數(shù),且,則___________.12.變量,之間有如下對應(yīng)數(shù)據(jù):3456713111087已知變量與呈線性相關(guān)關(guān)系,且回歸方程為,則的值是()A.2.3 B.2.5C.17.1 D.17.3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)f(x)=x3-3x2+2,則函數(shù)f(x)的極大值為______14.年月我國成功發(fā)射了第一顆人造地球衛(wèi)星“東方紅一號”,這顆衛(wèi)星的運行軌道是以地心(地球的中心)為一個焦點的橢圓.已知衛(wèi)星的近地點(離地面最近的點)距地面的高度約為,遠地點(離地面最遠的點)距地面的高度約為,且地心、近地點、遠地點三點在同一直線上,地球半徑約為,則衛(wèi)星運行軌道是上任意兩點間的距離的最大值為___________15.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元16.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和18.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據(jù)每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生的人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學生人數(shù).19.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大?。唬?)若,且的面積為,求的周長.20.(12分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點)21.(12分)已知關(guān)于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時的值.22.(10分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D2、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當且僅當時,等號成立,所以,.故選:A.3、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據(jù)是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數(shù)解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經(jīng)過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A4、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D5、A【解析】由向量數(shù)量積為實數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對于①,與共線,與共線,故不一定成立,故①正確;對于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯誤;對于③,若,取,則數(shù)不是數(shù)的等比中項,故③錯誤故選:A6、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.7、B【解析】先求導,再代入求值.詳解】,所以.故選:B8、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A9、D【解析】求出函數(shù)的導函數(shù),設(shè)切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標,再利用點到直線的距離公式計算可得;【詳解】解:因為,所以,設(shè)切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D10、C【解析】設(shè)出未知數(shù),列出方程組,求出答案.【詳解】設(shè)甲、乙、丙分得的米數(shù)為x+d,x,x-d,則,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故選:C11、8【解析】由已知條件中的偶函數(shù)即可計算出結(jié)果,【詳解】為偶函數(shù),且,.故答案為:812、D【解析】將樣本中心點代入回歸方程后求解【詳解】,,將樣本中心點代入回歸方程,得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,從而得到極大值.【詳解】,令,解得:,00極大值極小值所以當時,函數(shù)取得極大值,即函數(shù)的極大值為.故答案為:14、【解析】根據(jù)題意由a-c=439+6371,a+c=2384+6371,求得2a即可.【詳解】設(shè)橢圓的長半軸長為a,半焦距為c,由題意得:a-c=439+6371,a+c=2384+6371,兩式相加得:2a=15565,因為橢圓上任意兩點間的距離的最大值為長軸長2a,所以衛(wèi)星運行軌道是上任意兩點間的距離的最大值為,故答案為:1556515、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類推,第十年本利和為:元,故答案:16、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件列式求出數(shù)列的首項即可作答.(2)由(1)的結(jié)論求出,再借助裂項相消法計算作答.【小問1詳解】因為數(shù)列是公比為2的等比數(shù)列,且是與的等差中項,則有,即,解得,所以.【小問2詳解】由(1)知,,則,即有,所以.18、(1)樣本中高一年級學生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數(shù).【小問1詳解】解:樣本中高一年級學生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學生人數(shù)約為.19、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.20、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長公式,結(jié)合韋達定理可得的值,由點到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因為直線l與拋物線有兩個交點,所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點O到直線l的距離,所以,解得,即【點睛】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問題,意在考查綜合利用所學知識解決問題能力和較強的運算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題21、(1);(2),.【解析】(1)利用根與系數(shù)的關(guān)系,得到等式和不等式,最后求出的值;(2)化簡函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【小問1詳解】由題意知:,解得【小問2詳解】由(1)知,∴,由對勾函數(shù)單調(diào)性知在上單調(diào)遞減,∴,即當,函數(shù)的最小值為22、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標系,求得平面向量的法向量和相應(yīng)點的坐標,利用點面距離公式即可求得點面距離(2)假設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 集裝箱交易合同案例
- 法定節(jié)假日有哪些
- 六年級道德與法治上冊 第三單元 我們的國家機構(gòu) 5《國家機構(gòu)有哪些》教案2 新人教版
- 高中化學《離子反應(yīng)》教學設(shè)計
- 2024年春八年級物理下冊 第九章 第1節(jié) 壓強教案 (新版)新人教版
- 2024-2025學年高中生物 第二章 細胞的化學組成 2.2 細胞中的脂質(zhì)教案 蘇教版必修1
- 安徽省長豐縣八年級生物上冊 6.1.1 嘗試對生物進行分類教案 (新版)新人教版
- 2024-2025學年高中化學 第4章 第3節(jié) 蛋白質(zhì)和核酸教案 新人教版選修5
- 汽車試驗技術(shù) 課件 項目1 汽車試驗概述
- 綜合能源托管合同(2篇)
- 2024年中國石化招聘筆試參考題庫附帶答案詳解
- 2024年江蘇省鐵路集團有限公司招聘筆試參考題庫附帶答案詳解
- 鑄牢中華民族共同體意識課件
- 物流配送中心規(guī)劃
- 燈泡和電路的亮度和能量消耗
- 標書密封條模板大收集
- 小米宏觀產(chǎn)業(yè)環(huán)境分析報告
- DB3301-T 65.28-2018 反恐怖防范系統(tǒng)管理規(guī)范 第28部分:反恐怖防范目標硬質(zhì)隔離設(shè)施建設(shè)規(guī)范
- 2024虛擬電廠管理規(guī)范
- 醫(yī)療器械安全生產(chǎn)培訓
- 標本溢灑應(yīng)急預(yù)案演練圖
評論
0/150
提交評論