版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆甘肅省嘉峪關市高二數(shù)學第一學期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知,是雙曲線的左,右焦點,經(jīng)過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.3.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.4.已知空間向量,則()A. B.C. D.5.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.6.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.7.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個數(shù)不能確定8.已知,,若,則實數(shù)的值為()A. B.C. D.29.某研究所計劃建設n個實驗室,從第1實驗室到第n實驗室的建設費用依次構成等差數(shù)列,已知第7實驗室比第2實驗室的建設費用多15萬元,第3實驗室和第6實驗室的建設費用共為61萬元.現(xiàn)在總共有建設費用438萬元,則該研究所最多可以建設的實驗室個數(shù)是()A.10 B.11C.12 D.1310.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.11.若,則下列不等式不能成立是()A. B.C. D.12.設雙曲線與橢圓:有公共焦點,.若雙曲線經(jīng)過點,設為雙曲線與橢圓的一個交點,則的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點到直線的距離為________.14.過點與直線平行的直線的方程是________.15.在空間直角坐標系O-xyz中,平面OAB的一個法向量為=(2,-2,1),已知點P(-1,3,2),則點P到平面OAB的距離d等于__________________16.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點M到焦點F的距離為5,點M到x軸的距離為(1)求拋物線C的方程;(2)若拋物線C的準線l與x軸交于點Q,過點Q作直線交拋物線C于A,B兩點,設直線FA,F(xiàn)B的斜率分別為,.求的值18.(12分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.19.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項和.20.(12分)已知函數(shù),曲線y=f(x)在點(0,4)處的切線方程為(1)求a,b的值;(2)求f(x)的極大值21.(12分)已知拋物線C:()的焦點為F,原點O關于點F的對稱點為Q,點關于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.22.(10分)已知命題:方程表示焦點在軸上的雙曲線,命題:關于的方程無實根(1)若命題為真命題,求實數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】構造,通過求導,研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結合求出實數(shù)的取值范圍.【詳解】令,即,令,當時,,,令得:或,結合,所以,令得:,結合得:,所以在處取得極大值,也是最大值,,當時,,且,當時,,則恒成立,單調(diào)遞增,且當時,,當時,,畫出的圖象,如下圖:要想有3個零點,則故選:B2、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進而轉(zhuǎn)化為,的不等式,結合可得離心率的取值范圍【詳解】解:因為經(jīng)過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B3、B【解析】根據(jù)給定條件建立空間直角坐標系,令,用表示出點E,F(xiàn)坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設,則,設,有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B4、A【解析】求得,即可得出.【詳解】,,,.故選:A.5、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.6、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D7、C【解析】求出的值,結合大邊對大角定理可得出結論.【詳解】由正弦定理可得可得,因為,則,故為銳角,故滿足條件的只有一個.故選:C.8、D【解析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.9、C【解析】根據(jù)等差數(shù)列通項公式,列出方程組,求出的值,進而求出令根據(jù)題意令,即可求解.【詳解】設第n實驗室的建設費用為萬元,其中,則為等差數(shù)列,設公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設12個實驗室.故選:C.10、A【解析】由空間向量共面定理構造方程求得結果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.11、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.12、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用點到直線的距離公式即可得出【詳解】利用點到直線的距離可得:故答案為:14、【解析】根據(jù)給定條件設出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設與直線平行的直線的方程為,而點在直線上,于是得,解得,所以所求的直線的方程為.故答案為:15、2【解析】O是平面OAB上一個點,設點P到平面OAB的距離為d,則d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即點P到平面OAB的距離為2考點:空間向量在立體幾何中的運用16、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應用,考查不等式恒成立問題,解題的關鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學轉(zhuǎn)化思想,屬于較難題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】(1)由焦半徑公式求C的方程;(2)設直線AB方程,與拋物線方程聯(lián)立,由韋達定理表示出,,代入中化簡求值即可.小問1詳解】設點,則,所以,解得因為,所以.所以拋物線C的方程為【小問2詳解】由題知,,,直線AB的斜率必存在,且不為零設,,直線AB的斜率為k,則直線AB的方程為,由,得所以,,且,即所以所以的值為018、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項公式和等比中項,可得,再根據(jù)等差數(shù)列的前項和公式,即可求出,,進而求出結果;(2)由(1)得,結合等比數(shù)列前項和公式和對數(shù)運算性質(zhì),利用分組求和,即可求出結果.【小問1詳解】解:設的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.19、(1)證明見解析;(2).【解析】(1)根據(jù)遞推公式,結合等差數(shù)列的定義、等比數(shù)列的定義進行證明即可;(2)運用裂項相消法進行求解即可.【小問1詳解】∵,∴,又∵,∴,∴數(shù)列是首項為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項為2,公比為2的等比數(shù)列;【小問2詳解】由(1)知,則,∴,∴.20、(1)a=4,b=4(2)【解析】(1)由題意得到關于的方程組,求解方程組即可求出答案.(2)結合(1)中求得的函數(shù)解析式,求導得到的單調(diào)性,可得當x=-2時,函數(shù)f(x)取得極大值.【小問1詳解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8從而a=4,b=4【小問2詳解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2從而當時,f′(x)>0;當x∈(-2,-ln2)時,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上單調(diào)遞增,在(-2,-ln2)上單調(diào)遞減當x=-2時,函數(shù)f(x)取得極大值,極大值為21、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標,根據(jù)對稱關系求出的坐標,帶入即可求出.(2)設直線l的方程為,帶入拋物線方程利用韋達定理,計算出直線l的橫截距的表達式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設方程兩根為,,則,,(*)由得,∴,,又點M在拋物線C上,∴,化簡得,由題知M,A為不同兩點,故,,即,同理可得,∴,將
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)業(yè)機械出租與農(nóng)產(chǎn)品冷鏈物流合同3篇
- 二零二五年度公寓租賃合同書(含共享空間服務)3篇
- 2025年度大型國企原材料采購合同風險管理與優(yōu)化3篇
- 2025年度公務車輛個人使用管理與費用監(jiān)督協(xié)議3篇
- 二零二五年度數(shù)字健康產(chǎn)業(yè)合作成立公司協(xié)議3篇
- 2025年度車輛分期付款買賣合同協(xié)議書3篇
- 農(nóng)村土地征收補償安置買賣合同(2025年版)3篇
- 二零二五年度農(nóng)村土地經(jīng)營權流轉(zhuǎn)與農(nóng)業(yè)產(chǎn)業(yè)鏈金融合作合同2篇
- 二零二五年度高端醫(yī)療器械采購合同風險分析與預防3篇
- 二零二五年度美發(fā)品牌形象授權合作合同3篇
- 藝術類院校加強藝術法教育的思考
- 銀行商會戰(zhàn)略合作協(xié)議書
- 2025年日歷表帶農(nóng)歷【陰歷】完美打印版
- 重點實驗室申報
- 2024年中國華電集團公司招聘筆試參考題庫含答案解析
- 期末備考復習:語文園地重點知識梳理(課件)五年級上冊語文-部編版
- 濟南版生物八年級下冊全套單元測試題附答案(共3套)
- 機械設備安裝工施工詳細注意事項培訓
- 國際結算期末復習題庫及答案
- 銀行高質(zhì)量發(fā)展-發(fā)言稿
- 裝飾裝修工程施工重難點及保證措施
評論
0/150
提交評論