版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆安陽(yáng)市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn),是橢圓的左焦點(diǎn),是橢圓上任意一點(diǎn),則的取值范圍是()A. B.C. D.2.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種3.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有4.如圖,、分別是橢圓的左頂點(diǎn)和上頂點(diǎn),從橢圓上一點(diǎn)向軸作垂線,垂足為右焦點(diǎn),且,點(diǎn)到右準(zhǔn)線的距離為,則橢圓方程為()A. B.C. D.5.已知拋物線C:,焦點(diǎn)為F,點(diǎn)到在拋物線上,則()A.3 B.2C. D.6.若拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則點(diǎn)P到拋物線的焦點(diǎn)F的距離為()A.4 B.5C.6 D.77.一動(dòng)圓與圓外切,而與圓內(nèi)切,那么動(dòng)圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支8.已知圓O的半徑為5,,過點(diǎn)P的2021條弦的長(zhǎng)度組成一個(gè)等差數(shù)列,最短弦長(zhǎng)為,最長(zhǎng)弦長(zhǎng)為,則其公差為()A. B.C. D.9.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.10.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.11.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知拋物線,過拋物線的焦點(diǎn)作軸的垂線,與拋物線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,且為直角三角形,則以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有n個(gè),則的展開式中,的系數(shù)是___________.(用數(shù)字作答)14.等軸(實(shí)軸長(zhǎng)與虛軸長(zhǎng)相等)雙曲線的離心率_______15.函數(shù)在點(diǎn)處的切線方程是_________16.設(shè),則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列}的公差為整數(shù),為其前n項(xiàng)和,,(1)求{}的通項(xiàng)公式:(2)設(shè),數(shù)列的前n項(xiàng)和為,求18.(12分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前n項(xiàng)和Sn19.(12分)在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)為,且過點(diǎn),橢圓的上、下頂點(diǎn)分別為,右頂點(diǎn)為,直線過點(diǎn)且垂直于軸(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)在橢圓上(且在第一象限),直線與交于點(diǎn),直線與軸交于點(diǎn),試問:是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由20.(12分)2021年國(guó)務(wù)院政府工作報(bào)告中指出,扎實(shí)做好碳達(dá)峰、碳中和各項(xiàng)工作,制定2030年前碳排放達(dá)峰行動(dòng)方案,優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)和能源結(jié)構(gòu).汽車行業(yè)是碳排放量比較大的行業(yè)之一,若現(xiàn)對(duì)CO2排放量超過130g/km的MI型新車進(jìn)行懲罰(視為排放量超標(biāo)),某檢測(cè)單位對(duì)甲、乙兩類MI型品牌的新車各抽取了5輛進(jìn)行CO2排放量檢測(cè),記錄如下(單位:g/km):甲80110120140150乙100120xy160經(jīng)測(cè)算發(fā)現(xiàn),乙類品牌車CO2排放量的均值為乙=120g/km.(1)求甲類品牌汽車的排放量的平均值及方差;(2)若乙類品牌汽車比甲類品牌汽車CO2的排放量穩(wěn)定性好,求x的取值范圍.21.(12分)如圖,已知菱形ABCD的邊長(zhǎng)為3,對(duì)角線,將△沿著對(duì)角線BD翻折至△的位置,使得,在平面ABCD上方存在一點(diǎn)M,且平面ABCD,(1)求證:平面平面ABD;(2)求點(diǎn)M到平面ABE的距離;(3)求二面角的正弦值22.(10分)已知三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點(diǎn)D,,求CD的長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由,當(dāng)三點(diǎn)共線時(shí),取得最值【詳解】設(shè)是橢圓的右焦點(diǎn),則又因?yàn)?,,所以,則故選:A2、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.3、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C4、A【解析】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,求出點(diǎn)的坐標(biāo),根據(jù)可得出,可得出,,結(jié)合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,由圖可知,點(diǎn)第一象限,將代入橢圓方程得,得,所以,點(diǎn),易知點(diǎn)、,,,因?yàn)?,則,得,可得,則,點(diǎn)到右準(zhǔn)線的距離為為,則,,因此,橢圓的方程為.故選:A.5、D【解析】利用拋物線的定義求解.【詳解】因?yàn)辄c(diǎn)在拋物線上,,解得,利用拋物線的定義知故選:D6、A【解析】根據(jù)拋物線y2=4x上一點(diǎn)P到x軸的距離為2,得到點(diǎn)P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準(zhǔn)線方程為x=-1,∵拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則P(3,±2),∴點(diǎn)P到拋物線的準(zhǔn)線的距離為3+1=4,∴點(diǎn)P到拋物線的焦點(diǎn)F的距離為4.故選:A.7、A【解析】依據(jù)定義法去求動(dòng)圓的圓心的軌跡即可解決.【詳解】設(shè)動(dòng)圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動(dòng)圓的圓心的軌跡是以為焦點(diǎn)長(zhǎng)軸長(zhǎng)為9的橢圓.故選:A8、B【解析】可得過點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,最短弦長(zhǎng)為過點(diǎn)P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,,最短弦長(zhǎng)為過點(diǎn)P的與垂直的弦,,公差.故選:B.9、D【解析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D10、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.11、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因?yàn)槊}:或,命題:,所以是的必要不充分條件,故選:B12、B【解析】設(shè)點(diǎn)位于第一象限,求得直線的方程,可得出點(diǎn)的坐標(biāo),由拋物線的對(duì)稱性可得出,進(jìn)而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.【詳解】設(shè)點(diǎn)位于第一象限,直線的方程為,聯(lián)立,可得,所以,點(diǎn).為等腰直角三角形,由拋物線的對(duì)稱性可得出,則直線的斜率為,即,解得.因此,以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查拋物線標(biāo)準(zhǔn)方程的求解,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2022【解析】根據(jù)排列和組合計(jì)數(shù)公式求出,然后利用二項(xiàng)式定理進(jìn)行求解即可【詳解】解:用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù)中,滿足個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有個(gè),即,當(dāng)時(shí),,則系數(shù)是,故答案為:202214、【解析】由題意可知,,由,化簡(jiǎn)可求離心率.【詳解】由題意可知,,兩邊同時(shí)平方,得,即,,所以離心率,故答案為:.15、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,再結(jié)合直線的點(diǎn)斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點(diǎn)處切線方程是,即故答案為:.16、【解析】求出函數(shù)的導(dǎo)數(shù),再令,即可得出答案.【詳解】解:由,得,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意利用等差數(shù)列的性質(zhì)列出方程,即可解得答案;(2)根據(jù)(1)的結(jié)果,求出的表達(dá)式,利用裂項(xiàng)求和的方法求得答案.小問1詳解】設(shè)等差數(shù)列{}的公差為d,則,整理可得:,∵d是整數(shù),解得,從而,所以數(shù)列{}的通項(xiàng)公式為:;【小問2詳解】由(1)知,,所以18、(1)(2)【解析】(1)根據(jù)遞推關(guān)系式可得,再由等差數(shù)列的定義以及通項(xiàng)公式即可求解.(2)利用錯(cuò)位相減法即可求解.【小問1詳解】(1),即,所以數(shù)列為等差數(shù)列,公差為1,首項(xiàng)為1,所以,即.【小問2詳解】令,所以,所以19、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點(diǎn)形式設(shè)出橢圓方程和焦距,根據(jù)橢圓經(jīng)過和半焦距為3易得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),分別表示出直線方程,進(jìn)而求得點(diǎn)的縱坐標(biāo),點(diǎn)橫坐標(biāo),即可表示出,即可求得答案【小問1詳解】由焦點(diǎn)坐標(biāo)可知,橢圓的焦點(diǎn)在軸上,所以設(shè)橢圓:,焦距為,因?yàn)闄E圓經(jīng)過點(diǎn),焦點(diǎn)為所以,,解得,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè),由橢圓的方程可知,因?yàn)?,則直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因?yàn)辄c(diǎn)在第一象限,所以,,則,又因?yàn)?,即,所以所以為定值,該定值?.20、(1),600(2)【解析】用平均數(shù)及方差公式計(jì)算即可.用平均值得、之間的關(guān)系,再由,解不等式可得解.【小問1詳解】甲類品牌汽車的排放量的平均值,甲類品牌汽車的排放量的方差.【小問2詳解】由題意知乙類品牌汽車的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙類品牌汽車的排放量的方差,因?yàn)橐翌惼放破嚤燃最惼放破嚨呐欧帕糠€(wěn)定性好,所以,解得.21、(1)證明見解析;(2)1;(3).【解析】(1)過E作EO垂直于BD于O,連接AO,由勾股定義易得,由菱形的性質(zhì)有,再根據(jù)線面垂直、面面垂直的判定即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)的坐標(biāo),進(jìn)而求的坐標(biāo)及面ABE的法向量,應(yīng)用空間向量的坐標(biāo)運(yùn)算求點(diǎn)面距.(3)由(2)求得面MBA的法向量,結(jié)合(2)中面ABE的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值,進(jìn)而求其正弦值.【小問1詳解】過E作EO垂直于BD于O,連接AO,因?yàn)?,,故,同理,又,所以,即因?yàn)锳BCD為菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小問2詳解】以O(shè)為坐標(biāo)原點(diǎn),以,,分別為x軸,y軸,z軸的正方向,如圖建立空間
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四寧波事業(yè)單位公共安全服務(wù)合同3篇
- 2025年酒店總經(jīng)理職責(zé)范圍與薪酬福利合同
- 二零二五年度網(wǎng)絡(luò)安全檢測(cè)與分析簡(jiǎn)易勞動(dòng)合同樣板
- 2025年度蛋糕店客戶關(guān)系管理與維護(hù)合同
- 二零二五年度酒店客房租賃合同補(bǔ)充條款范文
- 2025年度個(gè)人教育貸款銀行擔(dān)保合同示范文本
- 二零二五年度電商用戶隱私保護(hù)合作協(xié)議
- 2025年度花店店面轉(zhuǎn)讓與花卉種植技術(shù)支持合同
- 2025年度綠色建筑瓷磚施工與節(jié)能評(píng)估合同
- 二零二五年度智能交通系統(tǒng)股份收購(gòu)合同
- 直播帶貨助農(nóng)現(xiàn)狀及發(fā)展對(duì)策研究-以抖音直播為例(開題)
- 腰椎間盤突出疑難病例討論
- 《光伏發(fā)電工程工程量清單計(jì)價(jià)規(guī)范》
- 2023-2024學(xué)年度人教版四年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)
- (完整版)保證藥品信息來(lái)源合法、真實(shí)、安全的管理措施、情況說明及相關(guān)證明
- 營(yíng)銷專員績(jī)效考核指標(biāo)
- 陜西麟游風(fēng)電吊裝方案專家論證版
- 供應(yīng)商審核培訓(xùn)教程
- 【盒馬鮮生生鮮類產(chǎn)品配送服務(wù)問題及優(yōu)化建議分析10000字(論文)】
- 肝硬化心衰患者的護(hù)理查房課件
- 2023年四川省樂山市中考數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論