版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年浙江省麗水地區(qū)四校2108-高二上數(shù)學期末經(jīng)典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則的最小值為()A. B.C. D.2.已知曲線,則“”是“C為雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知空間向量,,且,則的值為()A. B.C. D.4.已知是雙曲線的左焦點,,是雙曲線右支上的動點,則的最小值為()A.9 B.8C.7 D.65.直線與圓的位置關系是()A.相交 B.相切C.相離 D.都有可能6.二次方程的兩根為2,,那么關于的不等式的解集為()A.或 B.或C. D.7.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.58.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.9.設命題,,則為().A., B.,C., D.,10.已知等比數(shù)列的公比為,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.112.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,則______.14.將車行的30輛大巴車編號為01,02,…,30,采用系統(tǒng)抽樣方法抽取一個容量為3的樣本,且在某組隨機抽得的一個號碼為08,則剩下的兩個號碼依次是__________(按號碼從小到大排列)15.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.16.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在等差數(shù)列中,,(1)求的通項公式;(2)若,求數(shù)列的前項和18.(12分)為了了解高一年級學生的體能情況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長方形面積之比為2∶4∶17∶15∶9∶3,第二小組的頻數(shù)為12(1)第二小組的頻率是多少?樣本量是多少?(2)若次數(shù)在110以上(含110次)為達標,則該校全體高一年級學生的達標率是多少?(3)樣本中不達標的學生人數(shù)是多少?(4)第三組的頻數(shù)是多少?19.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標.20.(12分)設正項數(shù)列的前項和為,已知,(1)求數(shù)列的通項公式;(2)數(shù)列滿足,數(shù)列的前項和為,若不等式對一切恒成立,求的取值范圍21.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學期望.22.(10分)已知等比數(shù)列滿足,.(1)求數(shù)列的前8項和;(2)求數(shù)列的前項積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.2、A【解析】根據(jù)充分必要條件的定義,以及雙曲線的標準方程進行判斷可得選項【詳解】解:當時,表示雙曲線,當表示雙曲線時,則,所以“”是“C為雙曲線”的充分不必要條件.故選A3、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.4、A【解析】由雙曲線方程求出,再根據(jù)點在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點為,右焦點,則由雙曲線的定義得,因為點在雙曲線的兩支之間,所以,所以,當且僅當三點共線時取等號,所以的最小值為9,故選:A5、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關系是相交,故選:A.6、B【解析】根據(jù),確定二次函數(shù)的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因為二次方程的兩根為2,,又二次函數(shù)的圖象開口向上,所以不等式的解集為或,故選:B7、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.8、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D9、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因為命題,,所以為,.故選:B.10、B【解析】先分析充分性:假設特殊等比數(shù)列即可判斷;再分析充分性,由條件得恒成立,再對和進行分類討論即可判斷.【詳解】先分析充分性:在等比數(shù)列中,,所以假設,,所以,等比數(shù)列為遞減數(shù)列,故充分性不成立;分析必要性:若等比數(shù)列的公比為,且是遞增數(shù)列,所以恒成立,即恒成立,當,時,成立,當,時,不成立,當,時,不成立,當,時,不成立,當,時,成立,當,時,不成立,當,時,不恒成立,當,時,不恒成立,所以能使恒成立的只有:,和,,易知此時成立,所以必要性成立.故選:B.11、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設直線的傾斜角為,所以,因為,所以,因為直線的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C12、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)所給的通項公式,代入求得,并由代入求得,即可求得的值.【詳解】數(shù)列的前n項和,則,而,,∴,則,故答案為:.14、18,28【解析】根據(jù)等距抽樣的性質(zhì)確定剩下的兩個號碼即可.【詳解】由于從30輛大巴車中抽取3輛車,故分組間距為10,又第一組的號碼為08,所以其它兩個號碼依次是18,28故答案為:18,28.15、【解析】當圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關系,考查橢圓離心率取值范圍的求法,屬于中檔題.16、【解析】先根據(jù)橢圓的方程求得焦點坐標,然后根據(jù)為正六邊形求得點的坐標,即點在雙曲線上,然后解出方程即可【詳解】設雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標為:則點在雙曲線上,可得:又解得:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設的公差為,由等差數(shù)列的通項公式結(jié)合條件可得答案.(2)由(1)可得,由錯位相減法可得答案.【小問1詳解】設的公差為,由已知得且,解得,,所以的通項公式為【小問2詳解】由(1)可得,所以,所以,兩式相減得:,所以,所以18、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】頻率分布直方圖以面積的形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,所以計算面積之比即為所求小組的頻率.可用此方法計算(1),(2),由公式直接計算可得(1)中樣本容量;根據(jù)(2)問中的達標率,可計算不達標率,從而求出不達標人數(shù),可得(3);單獨計算第三組的頻率,由公式計算頻數(shù),可求出(4).【小問1詳解】頻率分布直方圖以面積形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為=0.08所以樣本容量==150.【小問2詳解】由直方圖可估計該校高一年級學生的達標率為×100%=88%.【小問3詳解】由(1)(2)知達標率為88%,樣本量為150,不達標的學生頻率為1-0.88=0.12所以樣本中不達標的學生人數(shù)為150×0.12=18(人)【小問4詳解】第三小組的頻率為=0.34又因為樣本量為150,所以第三組的頻數(shù)為150×0.34=5119、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設出圓心坐標,再結(jié)合點到直線距離公式計算作答.(2)設點,求出圓的方程,結(jié)合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設點,,設動圓上任意一點當與點P,M都不重合時,,有,當與點P,M之一重合時,對應為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式20、(1);(2).【解析】(1)利用的關系求的通項公式;(2)由(1)得,應用錯位相減法求,根據(jù)不等式,討論n的奇偶性求參數(shù)范圍即可.【小問1詳解】由題設,當時,則,整理得,,則,當時,,又得:,故,所以數(shù)列是首項、公差均為2的等差數(shù)列,故.【小問2詳解】由(1),,所以,,兩式相減得,故,所以令,易知:單調(diào)遞增,若為偶數(shù),則,所以;若為奇數(shù),則,所以,即綜上,21、(1);(2)分布列見解析,數(shù)學期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 正規(guī)車庫出租合同范例
- 培訓機構(gòu)融資合同范例
- 政府采購家具合同范例
- 石材賣買合同范例
- 天然汽運輸合同范例
- 銅仁幼兒師范高等專科學?!秱鞲衅髋c檢則技術(shù)》2023-2024學年第一學期期末試卷
- 銅仁學院《決策科學研究》2023-2024學年第一學期期末試卷
- 完整版100以內(nèi)加減法混合運算4000道164
- 完整版100以內(nèi)加減法混合運算4000道145
- 完整版100以內(nèi)加減法混合運算4000道94
- 建設年產(chǎn)70萬立方米液氦分裝項目可行性研究報告寫作模板-備案審批
- 任命基金管理人協(xié)議
- 2024年河北中考語文試題及答案
- HG/T 22820-2024 化工安全儀表系統(tǒng)工程設計規(guī)范(正式版)
- 偏微分方程智慧樹知到期末考試答案章節(jié)答案2024年山東大學(威海)
- 村集體經(jīng)濟入股分紅協(xié)議書
- 新時代大學生勞動教育智慧樹知到期末考試答案章節(jié)答案2024年黑龍江農(nóng)業(yè)經(jīng)濟職業(yè)學院
- MOOC 計量經(jīng)濟學-西南財經(jīng)大學 中國大學慕課答案
- MOOC 高等數(shù)學(上)-西北工業(yè)大學 中國大學慕課答案
- 毛澤東思想概論智慧樹知到期末考試答案2024年
- 中醫(yī)診所消防應急預案
評論
0/150
提交評論