版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆北師大實驗中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一輛汽車做直線運動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.32.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或233.設(shè),若直線與直線平行,則的值為()A. B.C.或 D.4.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.5.已知空間四邊形中,,,,點在上,且,為中點,則等于()A. B.C. D.6.函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增B.函數(shù)的遞減區(qū)間為C.函數(shù)在處取得極大值D.函數(shù)在處取得極小值7.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準(zhǔn)線交于點,若,則的斜率為()A. B.C. D.8.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),9.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.10.已知對稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點,使,則雙曲線的焦點()A.在軸上 B.在軸上C.當(dāng)時在軸上 D.當(dāng)時在軸上11.已知雙曲線的右焦點為F,則點F到其一條漸近線的距離為()A.1 B.2C.3 D.412.若拋物線x=﹣my2的焦點到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,總有.則為______14.已知函數(shù),,當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍為_______15.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標(biāo)原點).若,則的取值范圍是______16.直線過點,且原點到直線l的距離為,則直線方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.18.(12分)設(shè)等差數(shù)列的前項和為(1)求的通項公式;(2)求數(shù)列的前項和19.(12分)已知函數(shù)(m≥0).(1)當(dāng)m=0時,求曲線在點(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實數(shù)m的值.20.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數(shù)的值.21.(12分)浙江省新高考采用“3+3”模式,其中語文、數(shù)學(xué)、外語三科為必考科目,另外考生根據(jù)自己實際需要在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門科目中自選3門參加考試.下面是某校高一200名學(xué)生在一次檢測中的物理、化學(xué)、生物三科總分成績,以組距20分成7組:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],畫出頻率分布直方圖如下圖所示(1)求頻率分布直方圖中的值;(2)由頻率分布直方圖,求物理、化學(xué)、生物三科總分成績的第60百分位數(shù);(3)若小明決定從“物理、化學(xué)、生物、政治、技術(shù)”五門學(xué)科中選擇三門作為自己的選考科目,求小明選中“技術(shù)”的概率22.(10分)某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更???(不用計算,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運算能力,屬于基礎(chǔ)題.3、C【解析】根據(jù)直線的一般式判斷平行的條件進(jìn)行計算.【詳解】時,容易驗證兩直線不平行,當(dāng)時,根據(jù)兩直線平行的條件可知:,解得或.故選:C.4、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設(shè)不合,故,故,故,而,故,此時不確定,故選:D.5、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B6、C【解析】根據(jù)函數(shù)單調(diào)性與導(dǎo)數(shù)之間的關(guān)系及極值的定義結(jié)合圖像即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象可得,當(dāng)時,,故函數(shù)在和上遞減,當(dāng)時,,故函數(shù)在和上遞增,所以函數(shù)在和處取得極小值,在處取得極大值,故ABD錯誤,C正確.故選:C.7、C【解析】設(shè)直線的方程為,其中,設(shè)點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設(shè)直線的方程為,其中,設(shè)點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.8、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B9、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A10、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進(jìn)而可判斷出焦點的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點在軸上.故選B.【點睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標(biāo)準(zhǔn)方程的理解與運用,求解時要注意焦點落在軸或軸的特點,考查學(xué)生分析問題和解決問題的能力11、A【解析】由雙曲線方程可寫出右焦點坐標(biāo),再寫一漸近線方程,根據(jù)點到直線的距離公式可得答案.【詳解】雙曲線的右焦點F坐標(biāo)為,根據(jù)雙曲線的對稱性,不妨取一條漸近線為,故點F到漸近線的距離為,故選:A12、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點到準(zhǔn)線的距離為2,即,解得.故選D.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、,使得【解析】全稱命題改否定,首先把全稱量詞改成特稱量詞,然后把后面結(jié)論改否定即可.【詳解】解:因為命題,總有,所以的否定為:,使得故答案為,使得【點睛】本題考查了全稱命題的否定,全稱命題(特稱命題)改否定,首先把全稱量詞(特稱量詞)改成特稱量詞(全稱量詞),然后把后面結(jié)論改否定即可.14、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計算函數(shù)最小值得到答案.【詳解】當(dāng)時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時,,當(dāng)時,,所以,所以故答案為:15、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.16、【解析】直線斜率不存在不滿足題意,即設(shè)直線的點斜式方程,再利用點到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當(dāng)直線斜率不存在時,顯然不滿足題意.②當(dāng)直線斜率存在時,設(shè)直線為.原點到直線l的距離為,即直線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時,成立,所以在上遞減;②時,當(dāng)時,,當(dāng)時,,所以在上單增,單減;【小問2詳解】由(1)知:時,在單減,所以;時,在單減,所以;時,在上單增,上遞減,所以;時,在單增,所以;綜上:.18、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項和求和公式求出首項和公差,進(jìn)而求出通項公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項和負(fù)數(shù)項,進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問1詳解】設(shè)等差數(shù)列的首項和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當(dāng);當(dāng),當(dāng),時,,當(dāng)時,.綜上:.19、(1)(2)【解析】(1)求導(dǎo),利用導(dǎo)函數(shù)的幾何意義求解切線方程的斜率,進(jìn)而求出切線方程;(2)對導(dǎo)函數(shù)再次求導(dǎo),判斷其單調(diào)性,結(jié)合隱零點求出其最小值,列出方程,求出實數(shù)m的值.【小問1詳解】當(dāng)時,因為,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因為,令,因為,所以在上單調(diào)遞增,當(dāng)實數(shù)時,,;當(dāng)實數(shù)時,,;當(dāng)實數(shù)時,,所以總存在一個,使得,且當(dāng)時,;當(dāng)時,,所以,令,因為,所以單調(diào)遞減,又,所以時,所以,即.20、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達(dá)定理得出的關(guān)系,再根據(jù)中點坐標(biāo)公式求出線段的中點的坐標(biāo),代入圓方程即可求解.【小問1詳解】由題意,設(shè)雙曲線的方程為,則又因為雙曲線過點,,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設(shè),則因為直線與雙曲線交于不同的兩點,所以,解得.,所以則中點坐標(biāo)為,代入圓得,解得.實數(shù)的值為21、(1)=0.005(2)232(3)【解析】(1)由頻率和為1列方程求解即可,(2)由于前3組的頻率和小于0.6,前4組的頻率和大于0.6,所以三科總分成績的第60百分位數(shù)在第4組內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,從而可求得結(jié)果,(3)利用列舉法求解即可【小問1詳解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小問2詳解】因為(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科總分成績的第60百分位數(shù)在[220,240)內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,解得=232,即第60百分位數(shù)為232【小問3詳解】將物理、化學(xué)、生物、政治、技術(shù)5門學(xué)科分別記作.則事件A表示小明選中“技術(shù)”,則,所以P(A)=22、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】(1)先計算抽樣比為,進(jìn)而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年貴州省安順市關(guān)嶺縣鄉(xiāng)鎮(zhèn)事業(yè)單位歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖南懷化市衛(wèi)生健康委員會所屬事業(yè)單位招聘9人高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江溫州永嘉縣事業(yè)單位招聘(選調(diào))49人高頻重點提升(共500題)附帶答案詳解
- 2025下半年廣東江門開平市事業(yè)單位招聘職員128人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省綿陽涪城區(qū)事業(yè)單位招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海申通地鐵建設(shè)集團(tuán)限公司建設(shè)管理專業(yè)技術(shù)人員招聘高頻重點提升(共500題)附帶答案詳解
- 2025上半年福建泉州市直政府系統(tǒng)事業(yè)單位招考擬聘用人員5高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇省蘇州吳中高新區(qū)招聘17人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年山東特檢集團(tuán)招聘35人高頻重點提升(共500題)附帶答案詳解
- 進(jìn)口貨物運輸代理協(xié)議
- 原料藥FDA現(xiàn)場GMP符合性要求與檢查實踐課件
- 茶藝表演費課件
- 創(chuàng)建電力優(yōu)質(zhì)工程策劃及控制課件
- DBJ61-T 104-2015 陜西省村鎮(zhèn)建筑抗震設(shè)防技術(shù)規(guī)程-(高清版)
- 實戰(zhàn)銷售培訓(xùn)講座(共98頁).ppt
- 測控電路第7章信號細(xì)分與辨向電路
- 外研版(三起)小學(xué)英語四年級上冊教案(全冊)
- 小學(xué)生體育學(xué)習(xí)評價表
- 哈爾濱工業(yè)大學(xué)信紙模版
- 餐飲店應(yīng)聘人員面試測評表
- 踝關(guān)節(jié)扭傷.ppt
評論
0/150
提交評論