版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省陽谷縣二中數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是邊長為6的等邊所在平面外一點,,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.2.等比數(shù)列的各項均為正數(shù),且,則()A.5 B.10C.4 D.3.已知空間直角坐標(biāo)系中的點,,,則點P到直線AB的距離為()A. B.C. D.4.若,則x的值為()A.4 B.6C.4或6 D.85.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.6.已知命題p:,,則命題p的否定為()A., B.,C., D.,7.,則與分別為()A.與 B.與C.與0 D.0與8.已知矩形,為平面外一點,且平面,,分別為,上的點,且,,,則()A. B.C.1 D.9.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.10.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.已知平面的一個法向量為,則x軸與平面所成角的大小為()A. B.C. D.12.劉徽是一個偉大的數(shù)學(xué)家,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的數(shù)學(xué)遺產(chǎn),他所提出的割圓術(shù)可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術(shù)的第一步是求圓的內(nèi)接正六邊形的面積.若在圓內(nèi)隨機(jī)取一點,則此點取自該圓內(nèi)接正六邊形的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的導(dǎo)函數(shù)______.14.如圖所示,直線是曲線在點處的切線,則__________.15.已知為拋物線的焦點,為拋物線上的任意一點,點,則的最小值為______.16.已知等比數(shù)列的前n項和為,且滿足,則_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,直線經(jīng)過點且與直線平行,設(shè)直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標(biāo);(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.18.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補(bǔ)充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)在一次重大軍事聯(lián)合演習(xí)中,以點為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點正北方向海里處有一個雷達(dá)觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經(jīng)過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由20.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.21.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.22.(10分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.2、A【解析】利用等比數(shù)列的性質(zhì)及對數(shù)的運(yùn)算性質(zhì)求解.【詳解】由題有,則=5.故選:A3、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D4、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C5、A【解析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.6、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.7、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進(jìn)行求解即可.【詳解】因為,所以,所以,,故選:C8、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因為,,所以所以,因為,所以,所以,故選:B9、C【解析】根據(jù)所給的圖形和一組基底,從起點出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發(fā),沿著空間圖形的棱走到終點,若出現(xiàn)不是基底中的向量的情況,再重復(fù)這個過程,屬于基礎(chǔ)題10、A【解析】根據(jù)線面、面面位置關(guān)系有關(guān)知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當(dāng),時,和可能相交,B選項錯誤,對于C選項,當(dāng),時,可能含于,C選項錯誤,對于D選項,當(dāng),時,可能含于,D選項錯誤.故選:A11、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設(shè)x軸與平面所成角為,則,因為,所以,故選:C12、B【解析】此點取自該圓內(nèi)接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內(nèi)接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關(guān)鍵在于準(zhǔn)確求出正六邊形的面積和圓的面積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本初等函數(shù)的求導(dǎo)公式及積的求導(dǎo)法則計算作答.【詳解】函數(shù)定義域為,則,所以.故答案為:14、##【解析】利用直線所過點求得直線的斜率,從而求得.【詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:15、【解析】由拋物線的幾何性質(zhì)知:,由圖知為的最小值,求長度即可.【詳解】點是拋物線的焦點,其準(zhǔn)線方程為,作于,作于,∴,當(dāng)且僅當(dāng)為與拋物線的交點時取得等號,∴的最小值為.故答案為:.16、##31.5【解析】根據(jù)等比數(shù)列通項公式,求出,代入求和公式,即可得答案.【詳解】因為數(shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由直線平行及所過的點,應(yīng)用點斜式寫出直線方程,進(jìn)而求A、B坐標(biāo).(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標(biāo),即可求圓的半徑,進(jìn)而寫出圓C的方程.【小問1詳解】由題設(shè),的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.18、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運(yùn)算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.19、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個單位為海里,建立以為坐標(biāo)原點,正東、正北方向分別為、軸的正方向建立平面直角坐標(biāo)系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結(jié)論.【小問1詳解】解:設(shè)一個單位為海里,建立以為坐標(biāo)原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標(biāo)系,則坐標(biāo)平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進(jìn)入警戒區(qū)域20、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為21、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點,設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問1詳解】證明:,,為的中點,則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點,.平面平面,且平面平面,平面,平面.如圖,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設(shè)存在點,設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點,且點在線段上位于靠近點的四等分點處.22、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,再由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海運(yùn)出口運(yùn)輸合作合同要點
- 代工合作協(xié)議模板
- 合資經(jīng)營協(xié)議示范文本
- 定向培育與預(yù)就業(yè)協(xié)議書案例
- 高校畢業(yè)生就業(yè)協(xié)議書寫作指南
- 建筑安裝工程合同模板
- 中外農(nóng)產(chǎn)品電商營銷合作合同
- 涉外補(bǔ)償貿(mào)易合同書撰寫技巧
- 網(wǎng)絡(luò)證券委托買賣合同解讀
- 建筑行業(yè)合作協(xié)議書格式
- 礦山規(guī)模劃分標(biāo)準(zhǔn)
- 北師大版小學(xué)數(shù)學(xué)五年級上冊重點練習(xí)試題(全冊)
- 木蘭辭(拼音打印)
- 心血管介入考試器械植入模擬試題卷
- 意愿類能愿動詞偏誤分析——以“要”、“想”、“敢”、“肯”為例
- 職業(yè)病防治監(jiān)理實施細(xì)則
- 水輪機(jī)檢修規(guī)程鐘
- 變壓器類產(chǎn)品型號注冊管理辦法
- 廢鋼渣綜合利用項目建議書范文
- 柴油購銷合同模板
- My_school四年級ppt課件
評論
0/150
提交評論