版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省中山市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.2.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個(gè)橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個(gè)底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.3.已知,為橢圓的左、右焦點(diǎn),P為橢圓上一點(diǎn),若,則P點(diǎn)的橫坐標(biāo)為()A. B.C.4 D.94.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有5.已知數(shù)列的通項(xiàng)公式是,則()A10100 B.-10100C.5052 D.-50526.已知橢圓的兩個(gè)焦點(diǎn)分別為,且平行于軸的直線與橢圓交于兩點(diǎn),那么的值為()A. B.C. D.7.已知正三棱柱中,,點(diǎn)為中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.8.已知,是雙曲線的左,右焦點(diǎn),經(jīng)過點(diǎn)且與x軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn)A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.9.已知、,則直線的傾斜角為()A. B.C. D.10.已知向量a→=(1,1,k),A. B.C. D.11.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.12.已知數(shù)列滿足,,令,若對(duì)于任意不等式恒成立,則實(shí)數(shù)t的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有個(gè)點(diǎn),相應(yīng)的圖案中點(diǎn)的個(gè)數(shù)記為,按此規(guī)律,則___________,___________.14.已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為______________15.函數(shù),其導(dǎo)函數(shù)為函數(shù),則__________16.已知數(shù)列滿足,將數(shù)列按如下方式排列成新數(shù)列:,,,,,,,,,…,,….則新數(shù)列的前70項(xiàng)和為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了解某校今年高一年級(jí)女生的身體素質(zhì)狀況,從該校高一年級(jí)女生中抽取了一部分學(xué)生進(jìn)行“擲鉛球”的項(xiàng)目測試,成績低于5米為不合格,成績?cè)?至7米(含5米不含7米)的為及格,成績?cè)?米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績?cè)?米到11米之間(1)求實(shí)數(shù)的值及參加“擲鉛球”項(xiàng)目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機(jī)抽取2名學(xué)生再進(jìn)行其它項(xiàng)目的測試,求所抽取的2名學(xué)生自不同組的概率18.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時(shí),直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且|AB|=時(shí),求直線l的方程.19.(12分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍20.(12分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.21.(12分)某校從參加高二年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的化學(xué)成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求出這60名學(xué)生中化學(xué)成績低于50分的人數(shù);(2)估計(jì)高二年級(jí)這次考試化學(xué)學(xué)科及格率(60分以上為及格);(3)從化學(xué)成績不及格的學(xué)生中隨機(jī)調(diào)查1人,求他的成績低于50分的概率22.(10分)已知是奇函數(shù).(1)求的值;(2)若,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B2、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點(diǎn)睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.3、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B4、B【解析】由含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B5、D【解析】根據(jù)已知條件,用并項(xiàng)求和法即可求得結(jié)果.【詳解】∵∴∴.故選:D.6、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對(duì)稱性及定義求解即可.【詳解】由橢圓的對(duì)稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A7、A【解析】根據(jù)異面直線所成角的定義,取中點(diǎn)為,則為異面直線和所成角或其補(bǔ)角,再解三角形即可求出【詳解】如圖所示:設(shè)中點(diǎn)為,則在三角形中,為中點(diǎn),為中位線,所以有,,所以為異面直線和所成角或其補(bǔ)角,在三角形中,,所以由余弦定理有,故選:A.8、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因?yàn)榻?jīng)過點(diǎn)且與軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn),且在第三象限,四邊形為平行四邊形,所以由雙曲線的對(duì)稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因?yàn)?,所以,,即,所以,即,即,故,所?故選:B9、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.10、D【解析】根據(jù)向量的坐標(biāo)運(yùn)算和向量垂直數(shù)量積為0可解.【詳解】解:根據(jù)題意,易得a→∵與兩向量互相垂直,∴0+2+k+2=0,解得.故選:D11、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.12、D【解析】根據(jù)遞推關(guān)系,利用裂項(xiàng)相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對(duì)于任意不等式恒成立,則,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】利用題中所給規(guī)律求出即可.【詳解】解:由圖可知,,,,,因?yàn)榉系炔顢?shù)列的定義且公差為所以,所以,故答案為:,.14、【解析】由拋物線的定義得:,所以,當(dāng)三點(diǎn)共線時(shí),最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當(dāng)三點(diǎn)共線時(shí),最小,.故答案為:.15、【解析】根據(jù)解析式,可求得解析式,代入數(shù)據(jù),即可得答案.詳解】∵,∴,∴.故答案為:.16、##2.9375【解析】先根據(jù)題干條件得到,再利用錯(cuò)位相減法求前64項(xiàng)和,最后求出前70項(xiàng)和.【詳解】①,當(dāng)時(shí),;當(dāng)時(shí),②,①-②得:,即又滿足,所以由,得令,則,兩式相減得,則所以新數(shù)列的前70項(xiàng)和為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.05,40;(2)【解析】(1)因?yàn)橛深l率分布直方圖可得共五組的頻率和為1所以可得一個(gè)關(guān)于的等式,即可求出的值.再根據(jù)已知有4名學(xué)生的成績?cè)?米到11米之間,可以求出本次參加“擲鉛球”項(xiàng)目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計(jì)算易漏乘以組距.(2)因?yàn)槿舸舜螠y試成績最好的共有4名同學(xué).成績最差的共有2名同學(xué).所以從6名同學(xué)中抽取2名同學(xué)共有15中情況,其中兩人在同組情況由8中.所以可以計(jì)算出所求的概率.試題解析:(Ⅰ)由題意可知解得所以此次測試總?cè)藬?shù)為答:此次參加“擲鉛球”的項(xiàng)目測試的人數(shù)為40人(Ⅱ)設(shè)從此次測試成績最好和最差的兩組中隨機(jī)抽取2名學(xué)生自不同組的事件為A:由已知,測試成績?cè)谟?人,記為;在有4人,記為.從這6人中隨機(jī)抽取2人有,共15種情況事件A包括共8種情況.所以答:隨機(jī)抽取的2名學(xué)生自不同組的概率為考點(diǎn):1.頻率分布直方圖.2.概率問題.3.列舉分類的思想.18、(1);(2)或.【解析】(1)由題設(shè)可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點(diǎn)線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因?yàn)椋?,解得:,所以,整理得:,解得:或,則直線為或.19、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和(2)【解析】(1)求出,然后可得答案;(2)由條件可得,設(shè),則,然后利用導(dǎo)數(shù)可得在上單調(diào)遞增,,然后分、兩種情況討論求解即可.【小問1詳解】由題可得令,得;令,得,所以f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和【小問2詳解】由,得,即設(shè),則設(shè),則當(dāng)時(shí),,,所以所以即在上單調(diào)遞增,則若,則,所以h(x)在上單調(diào)遞增所以h(x)≥h(0)=0恒成立,符合題意若a>2,則,必存在正實(shí)數(shù),滿足:當(dāng)時(shí),,h(x)單調(diào)遞減,此時(shí)h(x)<h(0)=0,不符合題意綜上所述,a的取值范圍是20、(1)(2)證明見解析【解析】(1)當(dāng)時(shí),,求出,可得答案;(2)設(shè),,,,,設(shè),求出利用單調(diào)性可得答案.【小問1詳解】當(dāng)時(shí),,則,所以單調(diào)遞增,又,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以.【小問2詳解】設(shè),若,則,若,則,設(shè),則,所以單調(diào)遞增,又,當(dāng)時(shí),,上單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,所以,綜上,恒成立.【點(diǎn)睛】本題考查了求函數(shù)值域或最值的問題,一般都需要通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值來處理,特別的要根據(jù)所求問題,適時(shí)構(gòu)造恰當(dāng)?shù)暮瘮?shù),再利用所構(gòu)造函數(shù)的單調(diào)性、最值解決問題是常用方法,考查了學(xué)生分析問題、解決問題的能力.21、(1)6人;(2)75%;(3).【解析】(1)由頻率分布直方圖可得化學(xué)成績低于50分的頻率為0.1,然后可求得人數(shù)為人;(2)根據(jù)頻率分布直方圖求分?jǐn)?shù)在第三、四、五、六組的頻率之和即可;(3)結(jié)合圖形可得“成績低于50分”的人數(shù)是6人,成績?cè)谶@組的人數(shù)是,由古典概型概率公式可得所求概率為試題解析:(1)因?yàn)楦鹘M的頻率和等于1,由頻率分布直方圖可得低于50分的頻率為:,所以低于分的人數(shù)為(人)(2)依題意可得成績60及以上的分?jǐn)?shù)所在的第三、四、五、六組(低于50分的為第一組),其頻率之和為,故抽樣學(xué)生成績的及格率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)參考:金融高質(zhì)量發(fā)展視角下的區(qū)域廣義協(xié)調(diào)發(fā)展機(jī)理與政策統(tǒng)籌研究
- 課題申報(bào)參考:減碳責(zé)任量化與多產(chǎn)品企業(yè)投資綠色轉(zhuǎn)型:內(nèi)在機(jī)理、效應(yīng)評(píng)估與策略選擇
- 2025版委托擔(dān)保合同范本:供應(yīng)鏈金融合作風(fēng)險(xiǎn)控制協(xié)議3篇
- 二零二五版國際物流保險(xiǎn)合同訂立與理賠3篇
- 2025年伊犁貨車從業(yè)資格證考什么
- 2025年度個(gè)人自建別墅地基買賣合同8篇
- 二零二五年度混凝土工程進(jìn)度協(xié)調(diào)協(xié)議2篇
- 二零二五版木材加工企業(yè)環(huán)保責(zé)任承諾合同4篇
- 2025年建筑鋼材批量供應(yīng)及售后保障合同3篇
- 二零二五年度夫妻離婚后子女醫(yī)療費(fèi)用分擔(dān)協(xié)議2篇
- 2025-2030年中國陶瓷電容器行業(yè)運(yùn)營狀況與發(fā)展前景分析報(bào)告
- 二零二五年倉儲(chǔ)配送中心物業(yè)管理與優(yōu)化升級(jí)合同3篇
- 2025屆廈門高三1月質(zhì)檢期末聯(lián)考數(shù)學(xué)答案
- 音樂作品錄制許可
- 江蘇省無錫市2023-2024學(xué)年高三上學(xué)期期終教學(xué)質(zhì)量調(diào)研測試語文試題(解析版)
- 拉薩市2025屆高三第一次聯(lián)考(一模)英語試卷(含答案解析)
- 開題報(bào)告:AIGC背景下大學(xué)英語教學(xué)設(shè)計(jì)重構(gòu)研究
- 師德標(biāo)兵先進(jìn)事跡材料師德標(biāo)兵個(gè)人主要事跡
- 連鎖商務(wù)酒店述職報(bào)告
- 2024年山東省煙臺(tái)市初中學(xué)業(yè)水平考試地理試卷含答案
- 《實(shí)踐論》(原文)毛澤東
評(píng)論
0/150
提交評(píng)論