版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河北省張家口市宣化一中張北一中高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.2.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準(zhǔn)線與坐標(biāo)軸的交點,則的最大值是()A.2 B.C. D.3.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.4.設(shè)P是拋物線上的一個動點,F(xiàn)為拋物線的焦點.若,則的最小值為()A. B.C.4 D.55.已知橢圓和雙曲線有共同的焦點,分別是它們的在第一象限和第三象限的交點,且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.36.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點,則AM與平面所成角的正弦值為()A. B.C. D.7.命題“,”否定是()A., B.,C., D.,8.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.9.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.10.在二項式的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.11.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.12.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點一定是最值點B.的最值點一定是極值點C.在區(qū)間上可能沒有極值點D.在區(qū)間上可能沒有最值點二、填空題:本題共4小題,每小題5分,共20分。13.同時擲兩枚骰子,則點數(shù)和為7的概率是__________.14.設(shè)等差數(shù)列的前項和為,若,,則______15.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.16.已知函數(shù)有三個零點,則正實數(shù)a的取值范圍為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的標(biāo)準(zhǔn)方程為:,若右焦點為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點,直線與曲線相切且,,三點共線,求線段的長18.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程(2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標(biāo)準(zhǔn)方程19.(12分)已知直線經(jīng)過橢圓的右焦點,且橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)以橢圓的短軸為直徑作圓,若點M是第一象限內(nèi)圓周上一點,過點M作圓的切線交橢圓C于P,Q兩點,橢圓C的右焦點為,試判斷的周長是否為定值.若是,求出該定值20.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.21.(12分)在直角坐標(biāo)系中,點到兩點、的距離之和等于,設(shè)點的軌跡為,直線與交于、兩點(1)求曲線的方程;(2)若,求的值22.(10分)以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點,與曲線交于,兩點,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.2、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,則,當(dāng)直線PA與拋物線相切時,最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時的點P的坐標(biāo),然后進行計算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,所以則,當(dāng)最小時,則值最大,所以當(dāng)直線PA與拋物線相切時,θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標(biāo)為1,即P的坐標(biāo),所以,,所以的最大值為:,故選:B【點睛】關(guān)鍵點睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時可以應(yīng)用結(jié)論來處理的;平時練習(xí)時應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實現(xiàn)點點距和點線距的轉(zhuǎn)化3、A【解析】由得,為邊的中點得,設(shè),所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當(dāng)時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設(shè),所以,所以,當(dāng)時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當(dāng)時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.4、C【解析】作出圖形,過點作拋物線準(zhǔn)線的垂線,由拋物線的定義得,從而得出,再由、、三點共線時,取最小值得解.【詳解】,所以在拋物線的內(nèi)部,過點作拋物線準(zhǔn)線的垂線,由拋物線的定義得,,當(dāng)且僅當(dāng)、、三點共線時,等號成立,因此,的最小值為.故選:C.5、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點睛】關(guān)鍵點睛:本題考查共焦點的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點三角形的關(guān)系列出齊次方程式進行求解.6、B【解析】取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B7、D【解析】根據(jù)含有量詞的命題的否定即可得出結(jié)論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.8、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B9、A【解析】如圖建立空間直角坐標(biāo)系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標(biāo)原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A10、A【解析】先根據(jù)前三項的系數(shù)成等差數(shù)列求,再根據(jù)古典概型概率公式求結(jié)果【詳解】因為前三項的系數(shù)為,,,當(dāng)時,為有理項,從而概率為.故選:A.11、B【解析】取中點為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計算外接球半徑,最后根據(jù)球表面積公式計算.【詳解】設(shè)中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B12、C【解析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點不一定是最值點,的最值點不一定是極值點.可能是區(qū)間的端點,連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒有極值點,所以C正確故選:C.【點睛】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用古典概型的概率計算公式即得.【詳解】依題意,記拋擲兩顆骰子向上的點數(shù)分別為,,則可得到數(shù)組共有組,其中滿足的組數(shù)共有6組,分別為,,,,,,因此所求的概率等于.故答案為:.14、77【解析】依題意利用等差中項求得,進而求得.【詳解】依題意可得,則,故故答案為:77.15、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:16、【解析】求導(dǎo)易得函數(shù)有兩個極值點和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個極值點和,,,若函數(shù)有三個零點,必有解得或故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)橢圓的焦點、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應(yīng)用韋達定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當(dāng)直線的斜率不存在時,直線,不合題意:當(dāng)直線的斜率存在時,設(shè),又,,三點共線,可設(shè)直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.18、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質(zhì)可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標(biāo)準(zhǔn)方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標(biāo),進而可以設(shè)雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標(biāo)準(zhǔn)方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點,則有,,聯(lián)立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程的求法,涉及橢圓、雙曲線的幾何性質(zhì),屬于基礎(chǔ)題19、(1)(2)周長是定值,且定值為4【解析】(1)首先求出直線與軸的交點,即可求出,再根據(jù)離心率求出,最后根據(jù)求出,即可得解;(2):設(shè)直線的方程為、、,聯(lián)立直線與橢圓方程,消元列出韋達定理,即可表示出弦的長,再根據(jù)直線與圓相切,則圓心到直線的距離等于半徑,即可得到,再求出、,最后根據(jù)計算即可得解;【小問1詳解】解:因為經(jīng)過橢圓的右焦點,令,則,所以橢圓的右焦點為,可得:,又,可得:,由,所以,∴橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:設(shè)直線的方程為,由得:,所以,設(shè),,則:,所以.因為直線與圓相切,所以,即,所以,因為,又,所以,同理.所以,即的周長是定值,且定值為420、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點的坐標(biāo),利用點面距離公式即可求得點面距離(2)假設(shè)滿足題意的點存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結(jié),,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設(shè)存在點,,滿足題意,點在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點,點為的中點,即21、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點的軌跡;(2)本題首先可設(shè)、,然后聯(lián)立橢圓與直線方程,通過韋達定理得出、,最后通過得出,代入、的值并計算,即可得出結(jié)果.【詳解】(1)因為點到兩點、的距離之和等于,所以結(jié)合橢圓定義易知,點的軌跡是以點、為焦點且的橢圓,則,,,點的軌跡.(2)設(shè),,聯(lián)立,整理得,則,,因為,所以,即,整理得,則,整理得,解得.【點睛】關(guān)鍵點點睛:本題考查根據(jù)橢圓定義求動點軌跡以及直線與拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教學(xué)實訓(xùn)聽評課記錄表格
- 蘇科版數(shù)學(xué)九年級下冊5.5《用二次函數(shù)解決問題》(第3課時)講聽評課記錄
- 北師大版小學(xué)三年級數(shù)學(xué)上冊教學(xué)反思(共五篇)
- 人教部編版九年級歷史下冊聽課評課記錄:第18課《社會主義的發(fā)展與挫折》
- 2025年度股權(quán)贈與股權(quán)分紅權(quán)分配協(xié)議范本
- 數(shù)學(xué)七年級下學(xué)期《利用二元一次方程組解決較復(fù)雜的實際問題》聽評課記錄
- 湘教版地理七年級上冊《第三節(jié) 影響氣候的主要因素》聽課評課記錄
- 人教部編版八年級道德與法治上冊:4.2《以禮待人》聽課評課記錄4
- 蘇州蘇教版三年級下冊數(shù)學(xué)第四單元《19、不含括號的混合運算(除加、減的混合運算)》聽評課記錄
- 2025年度物聯(lián)網(wǎng)平臺數(shù)據(jù)安全保密協(xié)議范本
- 2024年監(jiān)控安裝合同范文6篇
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 煙葉復(fù)烤能源管理
- 應(yīng)收賬款管理
- 食品安全管理員考試題庫298題(含標(biāo)準(zhǔn)答案)
- 執(zhí)業(yè)醫(yī)師資格考試《臨床執(zhí)業(yè)醫(yī)師》 考前 押題試卷絕密1 答案
- 非ST段抬高型急性冠脈綜合征診斷和治療指南(2024)解讀
- 2024年山東濟寧初中學(xué)業(yè)水平考試地理試卷真題(含答案詳解)
- 社會保險課件教學(xué)課件
- 撫恤金喪葬費協(xié)議書模板
- 訂婚協(xié)議書手寫模板攻略
評論
0/150
提交評論