




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河北省遵化市鄉(xiāng)村中學(xué)高二上數(shù)學(xué)期末檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.2.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.3.如右圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方向滾動,M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.4.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.5.雙曲線的焦點(diǎn)到漸近線的距離為()A.1 B.2C. D.6.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.67.已知全集,,()A. B.C. D.8.有一機(jī)器人的運(yùn)動方程為,(是時(shí)間,是位移),則該機(jī)器人在時(shí)刻時(shí)的瞬時(shí)速度為()A. B.C. D.9.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點(diǎn),則的歐拉線方程為()A. B.C. D.10.某市統(tǒng)計(jì)局網(wǎng)站公布了2017年至2020年該市政府部門網(wǎng)站的每年的兩項(xiàng)訪問量,數(shù)據(jù)如下:年度項(xiàng)目2017年2018年2019年2020年獨(dú)立用戶訪問總量(單位:個(gè))2512573924400060989網(wǎng)站總訪問量(單位:次)23435370348194783219288下列表述中錯(cuò)誤的是()A.2017年至2018年,兩項(xiàng)訪問量都增長幅度較大;B.2018年至2019年,兩項(xiàng)訪問量都有所回落;C.2019年至2020年,兩項(xiàng)訪問量都又有所增長;D.從數(shù)據(jù)可以看出,該市政府部門網(wǎng)站的兩項(xiàng)訪問量都呈逐年增長態(tài)勢11.在等比數(shù)列{}中,,,則=()A.9 B.12C.±9 D.±1212.在數(shù)列中,,則()A. B.C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓交于兩點(diǎn),則面積的最大值為__________.14.雙曲線的漸近線方程為______15.已知函數(shù),則_________16.已知圓的半徑為3,,為該圓的兩條切線,為切點(diǎn),則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分){}是公差為1的等差數(shù)列,.正項(xiàng)數(shù)列{}的前n項(xiàng)和為,且.(1)求數(shù)列{}和數(shù)列}的通項(xiàng)公式;(2)在和之間插入1個(gè)數(shù),使,,成等差數(shù)列,在和之間插入2個(gè)數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個(gè)數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項(xiàng)公式;②求的值.18.(12分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值19.(12分)已知拋物線,直線交于、兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)如圖,拋物線在、兩點(diǎn)處的切線分別與軸交于、,和交于,.證明:存在實(shí)數(shù),使得.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間上有唯一的零點(diǎn).(ⅰ)求的取值范圍;(ⅱ)證明:.21.(12分)已知項(xiàng)數(shù)為的數(shù)列是各項(xiàng)均為非負(fù)實(shí)數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個(gè)是數(shù)列中的項(xiàng),則稱數(shù)列具有性質(zhì).(1)判斷數(shù)列,,,是否具有性質(zhì),并說明理由;(2)設(shè)數(shù)列具有性質(zhì),求證:;(3)若數(shù)列具有性質(zhì),且不是等差數(shù)列,求項(xiàng)數(shù)的所有可能取值.22.(10分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點(diǎn)B(,0)任作直線l交圓A于點(diǎn)C、D,過點(diǎn)B作與AD平行的直線交AC于點(diǎn)E.(1)求動點(diǎn)E的軌跡方程;(2)設(shè)動點(diǎn)E的軌跡與y軸正半軸交于點(diǎn)P,過點(diǎn)P且斜率為k1,k2的兩直線交動點(diǎn)E的軌跡于M、N兩點(diǎn)(異于點(diǎn)P),若,證明:直線MN過定點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時(shí),要注意利用平面幾何圓的知識來分析解答.2、B【解析】由題設(shè)命題的描述判斷、的真假,再判斷其復(fù)合命題的真假即可.【詳解】對于命題,僅當(dāng)時(shí),故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B3、A【解析】如圖:如圖,取小圓上一點(diǎn),連接并延長交大圓于點(diǎn),連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點(diǎn)是小圓轉(zhuǎn)動一定角度后的圓心,且這個(gè)角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點(diǎn),小圓上的點(diǎn),恰好滾動到大圓上的也就是此時(shí)的小圓與大圓的切點(diǎn).而在小圓中,圓心角(是小圓與的交點(diǎn))恰好等于,則,而點(diǎn)與點(diǎn)其實(shí)是同一個(gè)點(diǎn)在不同時(shí)刻的位置,則可知點(diǎn)與點(diǎn)是同一個(gè)點(diǎn)在不同時(shí)刻的位置.由于的任意性,可知點(diǎn)的軌跡是大圓水平的這條直徑.類似的可知點(diǎn)的軌跡是大圓豎直的這條直徑.故選A.4、B【解析】先根據(jù)復(fù)數(shù)除法與加法運(yùn)算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B5、A【解析】分別求出雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程,利用點(diǎn)到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點(diǎn)坐標(biāo)為漸近線方程為:∴雙曲線的焦點(diǎn)到漸近線的距離故選:A6、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.7、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C8、B【解析】對運(yùn)動方程求導(dǎo),根據(jù)導(dǎo)數(shù)意義即速度求得在時(shí)的導(dǎo)數(shù)值即可.【詳解】由題知,,當(dāng)時(shí),,即速度為7.故選:B9、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因?yàn)?,所以線段的中點(diǎn)的坐標(biāo),線段所在直線的斜率,則線段的垂直平分線的方程為,即,因?yàn)椋缘耐庑?、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點(diǎn)睛】本題主要考走查直線的方程,解題的關(guān)鍵是準(zhǔn)確找出歐拉線,屬于中檔題.10、D【解析】根據(jù)表格數(shù)據(jù),結(jié)合各選項(xiàng)的描述判斷正誤即可.【詳解】A:2017年至2018年,兩項(xiàng)訪問量分別增長、,顯然增長幅度相較于后兩年是最大的,正確;B:2018年至2019年,兩項(xiàng)訪問量相較于2017年至2018年都有回落,正確;C:2019年至2020年,兩項(xiàng)訪問量分別增長、,正確;D:由B分析知,該市政府部門網(wǎng)站的兩項(xiàng)訪問量在2018年至2019年有回落,而不是逐年增長態(tài)勢,錯(cuò)誤.故選:D.11、D【解析】根據(jù)題意,設(shè)等比數(shù)列的公比為,由等比數(shù)列的性質(zhì)求出,再求出【詳解】根據(jù)題意,設(shè)等比數(shù)列的公比為,若,,則,變形可得,則,故選:12、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計(jì)算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點(diǎn)的直線,如圖,連接,故,解得,此時(shí),故的面積為,當(dāng)且僅當(dāng)時(shí)等號成立,此時(shí)即,故答案為:.14、【解析】將雙曲線方程化成標(biāo)準(zhǔn)方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標(biāo)準(zhǔn)方程為,且,雙曲線的漸近線方程為,即故答案為【點(diǎn)睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.15、【解析】利用函數(shù)的解析式由內(nèi)到外逐層計(jì)算可得的值.【詳解】,,因此,.故答案為:.16、【解析】設(shè)(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(shè)(),,則,,,,當(dāng)且僅當(dāng)即時(shí)等號成立,∴的最小值是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項(xiàng)公式將展開化簡,求得首項(xiàng),可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質(zhì),采用倒序相加法求得結(jié)果;②根據(jù)數(shù)列的通項(xiàng)的特征,采用錯(cuò)位相減法求和即可.【小問1詳解】設(shè)數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項(xiàng)公式為;由可知:當(dāng),得,當(dāng)時(shí),,兩式相減得;,即,所以{}是以為首項(xiàng),為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.18、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因?yàn)椋傻?,解得,所以,即?shù)列的通項(xiàng)公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),,故n的最小值為1219、(1);(2)證明見解析.【解析】(1)將代入拋物線的方程,列出韋達(dá)定理,利用弦長公式可得出關(guān)于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達(dá)定理,求出兩切線方程,進(jìn)而可求得點(diǎn)的坐標(biāo),分、兩種情況討論,在時(shí),推導(dǎo)出、、重合,可得出;在時(shí),求出的中點(diǎn)的坐標(biāo),利用斜率關(guān)系可得出,結(jié)合平面向量的線性運(yùn)算可證得結(jié)論成立.【小問1詳解】解:將代入得,設(shè)、,則,由韋達(dá)定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設(shè)、,則,由韋達(dá)定理可得,對求導(dǎo)得,則拋物線在點(diǎn)處的切線方程為,即,①同理拋物線在點(diǎn)處的切線方程為,②聯(lián)立①②得,所以,所以點(diǎn)的坐標(biāo)為,當(dāng)時(shí),即切線與交于軸上一點(diǎn),此時(shí)、、重合,由,則,又,則存在使得成立;當(dāng)時(shí),切線與軸交于點(diǎn),切線與軸交于點(diǎn),由,得的中點(diǎn),由得,即,又,所以,所以,,又,所以存在實(shí)數(shù)使得成立.綜上,命題成立.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時(shí)計(jì)算;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達(dá)定理求解.20、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】(1)求出,,利用導(dǎo)數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對參數(shù)分類討論,當(dāng)時(shí),等價(jià)轉(zhuǎn)化,且構(gòu)造函數(shù),利用零點(diǎn)存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(ⅰ)中所求得到與的等量關(guān)系,求得并構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當(dāng)時(shí),,則,故,,則曲線在點(diǎn)處的切線方程為.【小問2詳解】(?。┮?yàn)?,故可得,因?yàn)?,則當(dāng)時(shí),,則,無零點(diǎn),不滿足題意;當(dāng)時(shí),若在有一個(gè)零點(diǎn),即在有一個(gè)零點(diǎn),也即在有一個(gè)零點(diǎn),又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點(diǎn),則;(ⅱ)由(?。┛芍粼趨^(qū)間上有唯一的零點(diǎn),則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)以及最值;處理問題的關(guān)鍵是合理轉(zhuǎn)化函數(shù)零點(diǎn)問題,以及充分利用零點(diǎn)存在定理,熟練掌握構(gòu)造函數(shù)法,屬綜合困難題.21、(1)數(shù)列,,,不具有性質(zhì);(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質(zhì)的定義,只需判斷存在與都不是數(shù)列中的項(xiàng)即可.(2)由性質(zhì)知:、,結(jié)合非負(fù)遞增性有,再由時(shí),必有,進(jìn)而可得,,,,,應(yīng)用累加法即可證結(jié)論.(3)討論、、,結(jié)合性質(zhì)、等差數(shù)列的性質(zhì)判斷是否存在符合題設(shè)性質(zhì),進(jìn)而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質(zhì).因?yàn)椋?,和均不是?shù)列,,,中的項(xiàng),所以數(shù)列,,,不具有性質(zhì).【小問2詳解】記數(shù)列的各項(xiàng)組成的集合為,又,由數(shù)列具有性質(zhì),,所以,即,所以.設(shè),因?yàn)椋?又,則,,,,.將上面的式子相加得:.所以.【小問3詳解】(i)當(dāng)時(shí),由(2)知,,,這與數(shù)列不是等差數(shù)列矛盾,不合題意.(ii)當(dāng)時(shí),存在數(shù)列,,,,符合題意,故可取.(iii)當(dāng)時(shí),由(2)知,.①當(dāng)時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東省安全員《C證》考試題庫
- 2025江蘇省建筑安全員-B證(項(xiàng)目經(jīng)理)考試題庫
- 南川承包魚塘合同范本
- 三年級口算題目練習(xí)集1000道
- 二年級口算題目總匯100道
- 2025年山東省建筑安全員《C證》考試題庫及答案
- 上海買車合同范本
- 醫(yī)院機(jī)器維修合同范本
- 企業(yè)委托服務(wù)合同范本
- 暗網(wǎng)監(jiān)測的學(xué)術(shù)誠信?
- 地理-天一大聯(lián)考2025屆高三四省聯(lián)考(陜晉青寧)試題和解析
- 小巴掌童話課件
- 教科版六年級科學(xué)下冊全冊教學(xué)設(shè)計(jì)教案
- 部編版小學(xué)五年級下冊《道德與法治》全冊教案含教學(xué)計(jì)劃
- 運(yùn)動會活動流程中的醫(yī)療安全保障措施
- 2025公司員工試用期合同(范本)
- 第十章皮膚軟組織擴(kuò)張術(shù)醫(yī)學(xué)美容教研室袁曉野講解
- 2025年冷鏈物流產(chǎn)品配送及倉儲管理承包合同3篇
- 2024年青島遠(yuǎn)洋船員職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 初中數(shù)學(xué)新課程標(biāo)準(zhǔn)(2024年版)
評論
0/150
提交評論