




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市楊思高中數(shù)學高二上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或42.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.3.若圓與圓外切,則()A. B.C. D.4.集合,則集合A的子集個數(shù)為()A.2個 B.4個C.8個 D.16個5.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.6.如圖,M為OA的中點,以為基底,,則實數(shù)組等于()A. B.C. D.7.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”8.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.9.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.410.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.11.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.6012.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)設上存在極大值M,證明:.14.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點,則|的最小值是_________15.某工廠年前加緊手套生產(chǎn),設該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬只16.在數(shù)列中,,且,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.18.(12分)已知曲線在處的切線方程為,且.(1)求的解析式;(2)若時,不等式恒成立,求實數(shù)的取值范圍.19.(12分)如圖,正三棱柱的側棱長為,底面邊長為,點為的中點,點在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值20.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點.(1)求證:平面;(2)求證:平面平面;(3)設點是平面上任意一點,直接寫出線段長度最小值.(不需證明)21.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.22.(10分)某牧場今年初牛的存欄數(shù)為1200,預計以后每年存欄數(shù)的增長率為8%,且每年年底賣出100頭牛,設牧場從今年起每年年初的計劃存欄數(shù)依次為,,….(參考數(shù)據(jù):,,.)(1)寫出一個遞推公式,表示與之間的關系;(2)將(1)中的遞推關系表示成的形式,其中k,r為常數(shù);(3)求的值(精確到1).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.2、A【解析】設5人分到的面包數(shù)量從小到大記為,設公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關于關系式,即可求出結論.【詳解】設5人分到的面包數(shù)量從小到大記為,設公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質應用是解題的關鍵,屬于中檔題.3、C【解析】求得兩圓的圓心坐標和半徑,結合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.4、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數(shù)為,故選:C.5、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B6、B【解析】根據(jù)空間向量減法的幾何意義進行求解即可.【詳解】,所以實數(shù)組故選:B7、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結論即可.命題“,”的否定形式是“,”.故選:C.8、C【解析】由等比中項的性質及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.9、A【解析】根據(jù)等差數(shù)列性質可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項公式可得解得故選:A10、C【解析】設內層橢圓的方程為,可得外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結合題意求得,進而求得離心率.【詳解】設內層橢圓方程為,因為內外層的橢圓的離心率相同,可設外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,整理得,由,整理得,設切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.11、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.12、A【解析】利用兩直線垂直斜率關系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、(1)在單調遞增,單調遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進行分類討論得到函數(shù)有極大值的情形,再結合極大值點的定義進行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當時,令,所以函數(shù)單調遞增;當時,令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調遞增,在區(qū)間中單調遞減,當時,令,即,解得或,令,即,解得,所以函數(shù)在單調遞增,在單調遞減.(2)由函數(shù),則,令,可得令,解得,當時.,函數(shù)在單調遞增,此時,所以,函數(shù)在上單調遞增,此時不存在極大值,當時,令解得,令,解得,所以上單調遞減,在上單調遞增,因為在上存在極大值,所以,解得,因為,易證明,存在時,,存在使得,當在區(qū)間上單調遞增,在區(qū)間單調遞減,所以當時,函數(shù)取得極大值,即,,由,所以【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題14、##【解析】由拋物線的定義可得,所以的最小值轉化為求的最小值,由圖可知的最小值為,從而可求得答案【詳解】拋物線y2=2x焦點,準線為,由拋物線的定義可得,所以,因為,,所以,所以,當且僅當三點共線且在線段上時,取得最小值,所以的最小值為,故答案為:15、2【解析】結合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設,則,.故答案為:16、##【解析】根據(jù)數(shù)列的遞推公式,發(fā)現(xiàn)規(guī)律,即數(shù)列為周期數(shù)列,然后求出即可【詳解】根據(jù)題意可得:,,,故數(shù)列為周期數(shù)列可得:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結合二次函數(shù)的性質求解.【小問1詳解】解:設數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當時,取得最小值-16.18、(1);(2).【解析】(1)根據(jù)導數(shù)的幾何意義得,結合對數(shù)的運算性質求出m,利用直線的點斜式方程即可得出切線方程;(2)由(1)將不等式變形為,利用導數(shù)研究函數(shù)在、、時的單調性,即可得出結果.【小問1詳解】,∴,,,,,切線方程為,即,∴.【小問2詳解】令,,,當時,,所以在上單調遞增,所以,即符合題意;當時,設,①當,,,所以在上單調遞增,,所以在上單調遞增,所以,故符合題意;②當時,,,所以在上遞增,在上遞減,且,所以當時,,則在上單調遞減,且,故,,舍去.綜上:19、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結合線面垂直的判定定理可證得結論成立;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,利用空間向量法可求得結果.【小問1詳解】證明:正中,點為的中點,,因為平面,平面,則,,則平面,平面,則,又,且,平面.【小問2詳解】解:因為,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,平面,平面,則,又因為,,故平面,所以,平面的一個法向量為,則.因此,平面和平面夾角的余弦值為.20、(1)證明見解析(2)證明見解析(3)【解析】(1)設,連結,根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結果;(2)由菱形的性質可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結果;(3)根據(jù)等體積法,即,經(jīng)過計算直接寫出結果即可.【小問1詳解】證明:設,連結.因為底面為菱形,所以為的中點,又因為E是PC的中點,所以.又因為平面,平面,所以平面.【小問2詳解】證明:因為底面為菱形,所以.因為底面,所以.又因為,所以平面.又因為平面,所以平面平面.【小問3詳解】解:線段長度的最小值為.21、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年電新行業(yè)供給回歸有序需求韌性較好靜待周期復蘇
- 直播電商主播在2025年的粉絲互動與營銷策略研究報告
- 老年教育課程設置改革與2025年體驗式教學方法應用分析報告
- 2025年農村一二三產(chǎn)業(yè)融合發(fā)展的農村電商與農業(yè)品牌建設報告
- 2025年文化旅游演藝項目季節(jié)性運營與市場策略報告
- 2025年成人教育終身學習平臺運營中的品牌建設與市場推廣報告
- 汽車輕量化材料在汽車底盤減重中的技術創(chuàng)新報告
- 汽車行業(yè)2025年供應鏈風險管理與企業(yè)風險管理策略優(yōu)化方案報告
- 汽車共享平臺2025年運營模式轉型與用戶行為重構報告
- 2025年遠程醫(yī)療服務在分級診療中的遠程醫(yī)療技術與設備研發(fā)與創(chuàng)新報告
- 國內外高等教育教材比較研究課題
- 浙江省紹興市諸暨市2023-2024學年五年級下學期期末數(shù)學試卷
- 重慶市大足縣2023-2024學年四年級數(shù)學第二學期期末聯(lián)考試題含解析
- 煤礦調度智能化培訓課件
- 基于PLC的啤酒發(fā)酵自動控制系統(tǒng)
- 重慶市沙坪壩區(qū)2022-2023學年八年級下學期期末英語試題
- 思辨與創(chuàng)新智慧樹知到期末考試答案章節(jié)答案2024年復旦大學
- 手術室-標準側臥位擺放
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 合伙人退出協(xié)議書
- (高清版)DZT 0208-2020 礦產(chǎn)地質勘查規(guī)范 金屬砂礦類
評論
0/150
提交評論