版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省自貢市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與圓相外切,則的值為()A. B.C.1 D.2.設(shè),命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且3.已知雙曲線的對(duì)稱(chēng)軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或4.已知向量,,且,則的值是()A. B.C. D.5.在中,角,,所對(duì)的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定6.已知,若,則()A. B.2C. D.e7.雙曲線的光學(xué)性質(zhì)為:如圖①,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長(zhǎng)線經(jīng)過(guò)左焦點(diǎn).我國(guó)首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)和點(diǎn)反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.8.已知過(guò)點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.9.三棱柱中,,,,若,則()A. B.C. D.10.已知數(shù)列滿足,,.設(shè),若對(duì)于,都有恒成立,則最大值為A.3 B.4C.7 D.911.對(duì)于圓上任意一點(diǎn)的值與x,y無(wú)關(guān),有下列結(jié)論:①當(dāng)時(shí),r有最大值1;②在r取最大值時(shí),則點(diǎn)的軌跡是一條直線;③當(dāng)時(shí),則.其中正確的個(gè)數(shù)是()A.3 B.2C.1 D.012.已知方程表示的曲線是焦點(diǎn)在軸上的橢圓,則的取值范圍A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和為,滿足,,則___________.14.已知是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足,若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是________15.在報(bào)名的3名男教師和3名女教師中,選取3人參加義務(wù)獻(xiàn)血,要求男、女教師都有,則不同的選取方法數(shù)為_(kāi)_________.(結(jié)果用數(shù)值表示)16.若圓錐的軸截面是頂角為的等腰三角形,且圓錐的側(cè)面積為,則該圓錐的體積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)過(guò)原點(diǎn)O的圓C,與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B(0,2)(1)求圓C的標(biāo)準(zhǔn)方程;(2)直線l過(guò)B點(diǎn)與圓C相切,求直線l的方程,并化為一般式18.(12分)已知函數(shù)(a為常數(shù))(1)討論函數(shù)的單調(diào)性;(2)不等式在上恒成立,求實(shí)數(shù)a的取值范圍.19.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時(shí)間.潛伏期越長(zhǎng),感染到他人的可能性越高.現(xiàn)對(duì)個(gè)病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過(guò)天的潛伏期屬于“長(zhǎng)潛伏期”,按照年齡統(tǒng)計(jì)樣本,得到下面的列聯(lián)表:年齡/人數(shù)長(zhǎng)期潛伏非長(zhǎng)期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長(zhǎng)期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對(duì)入境旅客一律要求隔離天,請(qǐng)用概率知識(shí)解釋其合理性;(ii)以題目中的樣本頻率估計(jì)概率,設(shè)個(gè)病例中恰有個(gè)屬于“長(zhǎng)期潛伏”的概率是,當(dāng)為何值時(shí),取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.20.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)求在區(qū)間上的最值.21.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線交拋物錢(qián)C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記直線OA,OB的斜率分別,,求證:為定值.22.(10分)已知圓與(1)過(guò)點(diǎn)作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點(diǎn),求的長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因?yàn)閮蓤A相外切,所以,解得,故選:D2、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.3、B【解析】分雙曲線的焦點(diǎn)在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點(diǎn)在軸上,則有,則雙曲線的離心率為;若焦點(diǎn)在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,在雙曲線的焦點(diǎn)位置不確定的情況下,要對(duì)雙曲線的焦點(diǎn)位置進(jìn)行分類(lèi)討論,考查計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.5、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)?,所以,所以,所以的形狀為鈍角三角形.故選:C6、B【解析】求得導(dǎo)函數(shù),則,計(jì)算即可得出結(jié)果.【詳解】,.,解得:.故選:B7、C【解析】連接,已知條件為,,設(shè),由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應(yīng)用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),,則,由得,,又,所以,,所以,所以,由得,因?yàn)?,故解得,則,在中,,即,所以故選:C8、B【解析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來(lái)確定點(diǎn)在圓上,然后求出過(guò)點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過(guò)點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.9、A【解析】利用空間向量線性運(yùn)算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.10、A【解析】整理數(shù)列的通項(xiàng)公式有:,結(jié)合可得數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,則,,原問(wèn)題即:恒成立,當(dāng)時(shí),,即>3,綜上可得:的最大值為3.本題選擇A選項(xiàng)點(diǎn)睛:數(shù)列的遞推關(guān)系是給出數(shù)列的一種方法,根據(jù)給出的初始值和遞推關(guān)系可以依次寫(xiě)出這個(gè)數(shù)列的各項(xiàng),由遞推關(guān)系求數(shù)列的通項(xiàng)公式,常用的方法有:①求出數(shù)列的前幾項(xiàng),再歸納猜想出數(shù)列的一個(gè)通項(xiàng)公式;②將已知遞推關(guān)系式整理、變形,變成等差、等比數(shù)列,或用累加法、累乘法、迭代法求通項(xiàng)11、B【解析】可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無(wú)關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無(wú)關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對(duì)于①,當(dāng)時(shí),r有最大值1,得出結(jié)論;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,得出結(jié)論;對(duì)于③當(dāng)時(shí),則得出結(jié)論.【詳解】設(shè),故可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無(wú)關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無(wú)關(guān),可知直線平移時(shí),點(diǎn)與直線,的距離之和均為,的距離,即此時(shí)圓在兩直線內(nèi)部,,的距離為,則,對(duì)于①,當(dāng)時(shí),r有最大值1,正確;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,正確;對(duì)于③當(dāng)時(shí),則即,解得或,故錯(cuò)誤.故正確結(jié)論有2個(gè),故選:B.12、A【解析】根據(jù)條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點(diǎn)在軸的橢圓,,解得:.故選A【點(diǎn)睛】本題考查根據(jù)橢圓的焦點(diǎn)位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,即可得到答案.【詳解】由題意各項(xiàng)均為正數(shù)的等比數(shù)列得:,故答案為:14、【解析】先求得,再得出,對(duì)于任意的,都有成立,說(shuō)明是中的最小項(xiàng)【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時(shí),,即,時(shí),,,由題意對(duì)于任意的,都有成立,則是最小項(xiàng),∴,解得,故答案為:15、18【解析】由題設(shè),選取方式有兩男教師一女教師或兩女教師一男教師,應(yīng)用組合數(shù)求出選取方法數(shù).【詳解】選取方式有:選兩男教師一女教師或選兩女教師一男教師,∴不同的選取方法有:種.故答案為:18.16、【解析】設(shè)圓錐的高為,可得出圓錐的母線長(zhǎng)為,以及圓錐的底面半徑為,利用圓錐的側(cè)面積公式求出的值,再利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的高為,由于圓錐的軸截面是頂角為的等腰三角形,則軸截面三角形的底角為,故該圓錐的母線長(zhǎng)為,底面半徑為,圓錐的側(cè)面積為,可得,因此,該圓錐的體積為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)設(shè)圓的標(biāo)準(zhǔn)方程為:,則分別代入原點(diǎn)和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過(guò)點(diǎn)與圓相切,則分別討論斜率存在與否,運(yùn)用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為,則分別代入原點(diǎn)和,得到,解得則圓的標(biāo)準(zhǔn)方程為(2)由(1)得到圓心為,半徑,由于直線過(guò)點(diǎn)與圓相切,當(dāng)時(shí),到的距離為2,不合題意,舍去;當(dāng)斜率存在時(shí),設(shè),由直線與圓相切,得到,即有,解得,故直線,即為點(diǎn)睛:本題考查直線與圓位置關(guān)系,考查圓的方程的求法和直線與圓相切的條件,考查運(yùn)算能力,屬于中檔題;圓的方程有一般形式與標(biāo)準(zhǔn)形式,在該題中利用待定系數(shù)法將其設(shè)為標(biāo)準(zhǔn)形式,列、解出方程組即可;當(dāng)直線與圓相切時(shí)等價(jià)于圓心到直線的距離等于半徑,已知直線上一點(diǎn)寫(xiě)出直線的方程需注意斜率不存在的情形.18、(1)當(dāng)時(shí),在定義域上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)求出的導(dǎo)數(shù),通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間即得解;(2)問(wèn)題轉(zhuǎn)化為,,,令,求出的最大值,從而求出的范圍即得解【詳解】解:(1)函數(shù)的定義域?yàn)?,,①?dāng)時(shí),,,,在定義域上單調(diào)遞增②當(dāng)時(shí),若,則,在上單調(diào)遞增;若,則,在上單調(diào)遞減綜上所述,當(dāng)時(shí),在定義域上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減(2)當(dāng)時(shí),,不等式在,上恒成立,,,,令,,,,在,上單調(diào)遞增,(1),,的范圍為,19、(1)有;(2)(i)答案見(jiàn)解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對(duì)比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個(gè)患者屬于“長(zhǎng)潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長(zhǎng)期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過(guò)天的概率很低,因此隔離天是合理的;(ⅱ)由于個(gè)病例中有個(gè)屬于長(zhǎng)潛伏期,若以樣本頻率估計(jì)概率,一個(gè)患者屬于“長(zhǎng)潛伏期”的概率是,于是,則,,當(dāng)時(shí),;當(dāng)時(shí),;∴,.故當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:利用獨(dú)立重復(fù)試驗(yàn)概率公式可以簡(jiǎn)化求概率的過(guò)程,但需要注意檢查該概率模型是否滿足公式的三個(gè)條件:(1)在一次試驗(yàn)中某事件A發(fā)生的概率是一個(gè)常數(shù)p;(2)n次試驗(yàn)不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗(yàn),而且各次試驗(yàn)的結(jié)果是相互獨(dú)立的;(3)該公式表示n次試驗(yàn)中事件A恰好發(fā)生了k次的概率20、(1)(2)最小值為0,最大值為4【解析】(1)利用導(dǎo)數(shù)求得切線方程.(2)結(jié)合導(dǎo)數(shù)求得在區(qū)間上的最值.【小問(wèn)1詳解】,所以曲線在點(diǎn)處的切線方程為.【小問(wèn)2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.21、(1)(2)證明見(jiàn)解析【解析】(1)將點(diǎn)代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時(shí),由過(guò)點(diǎn)即可求出點(diǎn)和點(diǎn)的坐標(biāo),即可求出的值.【小問(wèn)1詳解】將點(diǎn)代入得,,∴拋物線的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療診斷、監(jiān)護(hù)及治療設(shè)備制造考核試卷
- 二零二五年度跨境電子商務(wù)平臺(tái)運(yùn)營(yíng)承包合同2篇
- 合同簽訂授權(quán)委托書(shū)
- 2025年滬教版七年級(jí)歷史下冊(cè)月考試卷含答案
- 2025年北師大新版八年級(jí)地理上冊(cè)月考試卷含答案
- 2025年外研版三年級(jí)起點(diǎn)選擇性必修3歷史下冊(cè)階段測(cè)試試卷
- 2025年度暖通工程綠色建材采購(gòu)合同4篇
- 二零二五版景區(qū)導(dǎo)覽門(mén)牌定制服務(wù)合同4篇
- 2025版南京市房產(chǎn)局推廣的房屋抵押權(quán)設(shè)立合同模板4篇
- 二零二五年度農(nóng)膜行業(yè)人才培養(yǎng)與交流合同3篇
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(kù)(附答案)
- 合同簽訂執(zhí)行風(fēng)險(xiǎn)管控培訓(xùn)
- DB43-T 3022-2024黃柏栽培技術(shù)規(guī)程
- 九宮數(shù)獨(dú)200題(附答案全)
- 人員密集場(chǎng)所消防安全管理培訓(xùn)
- 《聚焦客戶創(chuàng)造價(jià)值》課件
- PTW-UNIDOS-E-放射劑量?jī)x中文說(shuō)明書(shū)
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹(shù)脂耐腐蝕立式貯罐
- 典范英語(yǔ)2b課文電子書(shū)
- 員工信息登記表(標(biāo)準(zhǔn)版)
評(píng)論
0/150
提交評(píng)論