2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆天津市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.2 B.4C.6 D.82.運(yùn)行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.213.《米老鼠和唐老鴨》這部動(dòng)畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡筆畫形象.已知3個(gè)圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.4.定義在區(qū)間上的函數(shù)滿足:對(duì)恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.5.已知E、F分別為橢圓的左、右焦點(diǎn),傾斜角為的直線l過點(diǎn)E,且與橢圓交于A,B兩點(diǎn),則的周長為A.10 B.12C.16 D.206.口袋中裝有大小形狀相同的紅球3個(gè),白球3個(gè),小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.757.已知命題,命題,,則下列命題中為真命題的是A. B.C. D.8.已知,,則的最小值為()A. B.C. D.9.若,則x的值為()A.4 B.6C.4或6 D.810.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離11.已知等差數(shù)列前項(xiàng)和為,且,,則此數(shù)列中絕對(duì)值最小的項(xiàng)為A.第5項(xiàng) B.第6項(xiàng)C.第7項(xiàng) D.第8項(xiàng)12.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線平行,則實(shí)數(shù)m的值為____________14.已知點(diǎn),,點(diǎn)P在x軸上,且,則點(diǎn)P的坐標(biāo)為______15.若正實(shí)數(shù)滿足則的最小值為________________________16.等比數(shù)列中,,,則數(shù)列的公比為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線上的焦點(diǎn),是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)滿足,則的軌跡方程.18.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面的距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請(qǐng)說明理由19.(12分)某牧場今年初牛的存欄數(shù)為1200,預(yù)計(jì)以后每年存欄數(shù)的增長率為8%,且每年年底賣出100頭牛,設(shè)牧場從今年起每年年初的計(jì)劃存欄數(shù)依次為,,….(參考數(shù)據(jù):,,.)(1)寫出一個(gè)遞推公式,表示與之間的關(guān)系;(2)將(1)中的遞推關(guān)系表示成的形式,其中k,r為常數(shù);(3)求的值(精確到1).20.(12分)已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,且.(1)求C;(2)若D是BC的中點(diǎn),,,求AB的長.21.(12分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍22.(10分)在平面直角坐標(biāo)系xOy中,曲線1與坐標(biāo)軸的交點(diǎn)都在圓C上(1)求圓C的方程;(2)設(shè)過點(diǎn)P(0,-2)的直線l與圓C交于A,B兩點(diǎn),且AB=2,求l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列前n項(xiàng)和公式,結(jié)合等差數(shù)列下標(biāo)的性質(zhì)、等差數(shù)列通項(xiàng)公式進(jìn)行求解即可.【詳解】設(shè)等差數(shù)列的公差為,,,故選:B2、D【解析】根據(jù)給出的循環(huán)程序進(jìn)行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得4、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點(diǎn)睛】函數(shù)的性質(zhì)是高考的重點(diǎn)內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個(gè)不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時(shí),必須堅(jiān)持定義域優(yōu)先的原則.對(duì)于函數(shù)實(shí)際應(yīng)用問題,注意挖掘隱含在實(shí)際中的條件,避免忽略實(shí)際意義對(duì)定義域的影響5、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點(diǎn)睛】本題考查橢圓簡單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長的求法,屬于基本知識(shí)的考查6、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計(jì)算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C7、D【解析】命題是假命題,命題是真命題,根據(jù)復(fù)合命題的真值表可判斷真假.【詳解】因?yàn)?,故命題是假命題,又命題是真命題,故為假,為假,為假,為真命題,故選D.【點(diǎn)睛】復(fù)合命題的真假判斷有如下規(guī)律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.8、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.因此,的最小值為.故選B.【點(diǎn)睛】本題考查利用基本不等式求最值,在利用基本不等式時(shí)要注意“一正、二定、三相等”條件的成立,考查計(jì)算能力,屬于中等題.9、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C10、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.11、C【解析】設(shè)等差數(shù)列的首項(xiàng)為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項(xiàng)為正,第7項(xiàng)及后面的項(xiàng)為負(fù),又,則,則在數(shù)列中絕對(duì)值最小的項(xiàng)為,選C.12、C【解析】求出二項(xiàng)式定理的通項(xiàng)公式,得到除以7余數(shù)是1,然后利用周期性進(jìn)行計(jì)算即可【詳解】解:一個(gè)星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因?yàn)橹本€與直線平行,所以,解得故答案為:14、【解析】設(shè),由,可得,求解即可【詳解】設(shè),由故解得:則點(diǎn)P的坐標(biāo)為故答案為:15、【解析】利用基本不等式即可求解.【詳解】,,又,,,當(dāng)且僅當(dāng)即,等號(hào)成立,.故答案為:【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方.16、【解析】根據(jù)等比數(shù)列的定義,結(jié)合已知條件,代值計(jì)算即可求得結(jié)果.【詳解】因?yàn)槭堑缺葦?shù)列,設(shè)其公比為,又,,故可得,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】由拋物線的方程可得到焦點(diǎn)坐標(biāo),設(shè),寫出向量的坐標(biāo),由向量間的關(guān)系得到,將點(diǎn)代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點(diǎn)睛】求軌跡方程,一般是求誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對(duì)于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).18、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)椋?,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因,所以,所以,得,所以點(diǎn)到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以19、(1)(2)(3)10626【解析】(1)根據(jù)題意,建立遞推關(guān)系即可;(2)利用待定系數(shù)法求解得.(3)利用等比數(shù)列求和公式,結(jié)合已知數(shù)據(jù)求解即可.【小問1詳解】解:因?yàn)槟衬翀鼋衲瓿跖5拇鏅跀?shù)為1200,預(yù)計(jì)以后每年存欄數(shù)的增長率為8%,且每年年底賣出100頭牛,所以,且.【小問2詳解】解:將化成,因?yàn)樗员容^的系數(shù),可得,解得.所以(1)中的遞推公式可以化為.【小問3詳解】解:由(2)可知,數(shù)列是以為首項(xiàng),1.08為公比的等比數(shù)列,則.所以.20、(1)(2)【解析】(1)根據(jù)正弦定理化邊為角,結(jié)合三角變換可求答案;(2)根據(jù)余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設(shè),則,即,解得或(舍去),∴.∵,∴.21、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問題等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項(xiàng)公式分別是:,.【小問2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項(xiàng)和.【小問3詳解】由(1)知,,依題意得對(duì)任意恒成立,設(shè),則,當(dāng),,為單調(diào)遞減數(shù)列,當(dāng),,為單調(diào)遞增數(shù)列,顯然有,則當(dāng)時(shí),取得最大值,即最大值是,因此,,所以實(shí)數(shù)k取值范圍是.【點(diǎn)睛】思路點(diǎn)睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論