![2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/28f6a827c36ce5d6e9df1719d45a589e/28f6a827c36ce5d6e9df1719d45a589e1.gif)
![2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/28f6a827c36ce5d6e9df1719d45a589e/28f6a827c36ce5d6e9df1719d45a589e2.gif)
![2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/28f6a827c36ce5d6e9df1719d45a589e/28f6a827c36ce5d6e9df1719d45a589e3.gif)
![2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/28f6a827c36ce5d6e9df1719d45a589e/28f6a827c36ce5d6e9df1719d45a589e4.gif)
![2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/28f6a827c36ce5d6e9df1719d45a589e/28f6a827c36ce5d6e9df1719d45a589e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆溫州市重點中學(xué)數(shù)學(xué)高二上期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的長軸長為10,焦距為8,則該橢圓的短軸長等于()A.3 B.6C.8 D.122.下列說法正確的個數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個3.下列拋物線中,以點為焦點的是()A. B.C. D.4.已知,,,則最小值是()A.10 B.9C.8 D.75.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.6.下列命題是真命題的個數(shù)為()①不等式的解集為②不等式的解集為R③設(shè),則④命題“若,則或”為真命題A1 B.2C.3 D.47.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.168.在正方體中,AC與BD的交點為M.設(shè)則下列向量與相等的向量是()A. B.C. D.9.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.210.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.11.已知,是橢圓C的兩個焦點,P是C上的一點,若以為直徑的圓過點P,且,則C的離心率為()A. B.C. D.12.三棱柱中,,,,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,M、N分別是BC、的中點,若,則______14.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是,則_______.月份1234用水量4.5432.515.設(shè),分別是橢圓C:左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________16.總書記在2021年2月25日召開的全國脫貧攻堅總結(jié)表彰大會上發(fā)表重要講話,莊嚴(yán)宣告,在迎來中國共產(chǎn)黨成立一百周年的重要時刻,我國脫貧攻堅取得了全面勝利.在脫貧攻堅過程中,為了解某地農(nóng)村經(jīng)濟(jì)情況,工作人員對該地農(nóng)戶家庭年收入進(jìn)行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下列結(jié)論中所存確結(jié)論的序號是____________①該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率估計為6%;②該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計為10%;③估計該地農(nóng)戶家庭年收入的平均值不超過6.5萬元;④估計該地有一半以上農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已如空間直角標(biāo)系中,點都在平面內(nèi),求實數(shù)y的值18.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.19.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時,直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.20.(12分)平面直角坐標(biāo)系xOy中,點,,點M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點,若,求.21.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.22.(10分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為假命題,為真命題,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓中的關(guān)系即可求解.【詳解】橢圓的長軸長為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長,故選:B.2、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B3、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點坐標(biāo)即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.4、B【解析】利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當(dāng)且僅當(dāng),即時等號成立故選:B5、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點,進(jìn)而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D6、B【解析】舉反例判斷A,解一元二次不等式確定B,由導(dǎo)數(shù)的運算法則求導(dǎo)判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯;,B正確;,,C錯;命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個數(shù)2.故選:B7、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因為|k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時,等號成立,故選:B8、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.9、A【解析】先求出,利用等比中項求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當(dāng)時,,不符合等比數(shù)列的定義,應(yīng)舍去,故.故選:A.10、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當(dāng)時,,,當(dāng)時,,,綜上所述,的取值范圍為,故選:A11、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點睛】本題考查橢圓離心率的計算,考查運算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點三角形中根據(jù)邊角關(guān)系求解.12、A【解析】利用空間向量線性運算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】作出圖像,根據(jù)幾何關(guān)系,結(jié)合空間向量的加減法運算法則即可求解.【詳解】,∴,,,故答案為:-2.14、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.15、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:16、①②④【解析】利用頻率分布直方圖中頻率的求解方法,通過求解頻率即可判斷選項①,②,④,利用平均值的計算方法,即可判斷選項③【詳解】解:對于①,該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率為,故選項①正確;對于②,該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率為,故選項②正確;對于③,估計該地農(nóng)戶家庭年收入的平均值為萬元,故選項③錯誤;對于④,家庭年收入介于4.5萬元至8.5萬元之間的頻率為,故估計該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間,故選項④正確故答案為:①②④三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】方法一:根據(jù)平面向量基本定理即可解出;方法二:先求出平面的一個法向量,再根據(jù)即可求出【詳解】方法一:,由題意知A,B,C,P四點共面,則存在實數(shù),滿足∵,∴∴,而,∴方法二:,設(shè)平面的一個法向量為,則,∴取,則,∵,∴,解得18、(1);(2)分布列見解析,數(shù)學(xué)期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進(jìn)而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解】因為從10輛共享電動車中任取一輛,取到橙色的概率為0.4,所以橙色的電動車有4輛,熒光綠的電動車有6輛.記A為“從中任取3輛共享單車中恰好有一輛是橙色”,則.【小問2詳解】隨機(jī)變量X的所有可能取值為0,1,2,3.所以,,,.所以分布列為0123數(shù)學(xué)期望.19、(1);(2)或.【解析】(1)由題設(shè)可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,即,解得:,所以,整理得:,解得:或,則直線為或.20、(1)C是以點,為左右焦點的橢圓,(2)【解析】(1)根據(jù)橢圓的定義即可得到答案.(2)當(dāng)垂直于軸時,,舍去.當(dāng)不垂直于軸時,可設(shè),再根據(jù)題意結(jié)合韋達(dá)定理求解即可.【小問1詳解】因為,,所以C是以點,為左右焦點的橢圓.于是,,故,因此C的方程為.【小問2詳解】當(dāng)垂直于軸時,,,舍去.當(dāng)不垂直于軸時,可設(shè),代入可得.因為,設(shè),,則,.因為,所以.同理.因此.由可得,,于是.根據(jù)橢圓定義可知,于是.21、(1)證明見解析(2)【解析】(1)通過構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明:設(shè)為的中點,連接,,因為,分別為,的中點.所以且,又,為的中點,所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問2詳解】取的中點,連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點,∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,,,,.設(shè)為平面的一個法向量,則有即取可取,設(shè)為平面的一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度酒水倉儲物流服務(wù)合同
- 2025年度體育賽事兼職裁判員勞務(wù)合同范本
- 2025年度企業(yè)與個人租賃農(nóng)地合同規(guī)范
- 2025年度股權(quán)轉(zhuǎn)讓與人才引進(jìn)及培養(yǎng)協(xié)議
- 2025年度惠州個人購房合同智能家居升級服務(wù)合同
- 2025年中國電機(jī)托盤行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年度建筑企業(yè)施工混凝土工勞動合同范本
- 2025年度大型機(jī)械車輛租賃合同書特種工程專用版
- 2025年度農(nóng)業(yè)現(xiàn)代化項目進(jìn)度款支付合同
- 2025年度文化創(chuàng)意產(chǎn)品個人設(shè)計承包合同
- 銀行個人業(yè)務(wù)培訓(xùn)課件
- 2024年ISTQB認(rèn)證筆試歷年真題薈萃含答案
- tpu顆粒生產(chǎn)工藝
- 《體檢中心培訓(xùn)》課件
- 《跟著音樂去旅行》課件
- 初中數(shù)學(xué)深度學(xué)習(xí)與核心素養(yǎng)探討
- 特殊教育導(dǎo)論 課件 第1-6章 特殊教育的基本概念-智力異常兒童的教育
- 辭職申請表-中英文模板
- 07J501-1鋼雨篷玻璃面板圖集
- 2023學(xué)年完整公開課版家鄉(xiāng)的方言
- 母親健康快車可行性報告
評論
0/150
提交評論