人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)【含答案】_第1頁(yè)
人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)【含答案】_第2頁(yè)
人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)【含答案】_第3頁(yè)
人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)【含答案】_第4頁(yè)
人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)【含答案】_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版2023-2024學(xué)年中考數(shù)學(xué)模擬試卷(二)一、單選題1.?1A.12 B.?12 C.±2.在平面直角坐標(biāo)系中,以原點(diǎn)為中心,把點(diǎn)A(2,3)逆時(shí)針旋轉(zhuǎn)180°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為()A.(?2,3) B.(?2,?3) C.(2,?3) D.(?3,?2)3.據(jù)報(bào)道,目前我國(guó)“神威﹒太湖之光”超級(jí)計(jì)算機(jī)的運(yùn)算速度位居全球第一,其運(yùn)算速度達(dá)到了每秒1250000000億次,數(shù)字1250000000用科學(xué)記數(shù)法可簡(jiǎn)潔表示為()A.1.25×109 B.0.125×1010 C.12.5×108 D.1.25×10104.如圖,已知正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F分別為AB、BC邊的中點(diǎn),連接AF、DE相交于點(diǎn)M,則cos∠CDM等于()A.55 B.255 C.15.下列算式中,結(jié)果等于x5的是()A.x10÷x2 B.x2+x3 C.x2?x3 D.(x2)36.某班為了解學(xué)生每周“家務(wù)勞動(dòng)”情況,隨機(jī)調(diào)查了7名學(xué)生每周的勞動(dòng)時(shí)間,一周內(nèi)累計(jì)參加家務(wù)勞動(dòng)的時(shí)間分別為:2小時(shí)、3小時(shí)、2小時(shí)、3小時(shí)、2.5小時(shí)、3小時(shí)、1.5小時(shí),則這組數(shù)據(jù)的中位數(shù)為()A.1.5小時(shí) B.2小時(shí) C.2.5小時(shí) D.3小時(shí)7.在探索多邊形內(nèi)角和公式的過(guò)程中,多數(shù)同學(xué)采用如下表格中分割多邊形的方法,并從四邊形,五邊形等特殊多邊形的內(nèi)角和計(jì)算,得到n邊形的內(nèi)角和公式.多邊形四邊形五邊形六邊形七邊形…n邊形圖例…內(nèi)角和(4?2)×180°(5?2)×180°(6?2)×180°(7?2)×180°…(n?2)×180°以上表格中:由(4?2)×180°=360°,(5?2)×180°=540°,(6?2)×180°=720°,(7?2)×180°=900°,…,得到(n?2)×180°的結(jié)論,體現(xiàn)的數(shù)學(xué)思想是:()A.?dāng)?shù)形結(jié)合 B.類比C.由特殊到一般 D.公理化8.如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,∠AOB=60°,若矩形的對(duì)角線長(zhǎng)為4,則AD的長(zhǎng)是()A.2 B.4 C.23 D.439.如圖,函數(shù)y=2x和y=ax+4的圖象相交于點(diǎn)A(m,3),則不等式2x<ax+4的解集為()A.x<3 B.x>32 C.x<310.如圖將半徑為2cm的圓形紙片折疊后,圓弧恰好經(jīng)過(guò)圓心O,則折痕AB的長(zhǎng)為()A.2cm B.3cm C.25cm D.23cm二、填空題11.因式分解:x2?4x+4=12.已知一次函數(shù)y=kx+k﹣3的圖象經(jīng)過(guò)點(diǎn)(2,3),則k的值為13.請(qǐng)你閱讀下面的詩(shī)句:“棲樹一群鴉,鴉數(shù)不知數(shù),三只棲一樹,五只沒去處,五只棲一樹,閑了一棵樹,請(qǐng)你仔細(xì)數(shù),鴉樹各幾何?”詩(shī)句中談到的鴉為只,樹為棵.14.如圖,在△ABC中,∠C=90°,∠A=30°,AB=6,則BC=.15.如圖,正方形ABCO的邊長(zhǎng)為1,頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在第二象限,頂點(diǎn)C、A分別在x、y軸上,把x軸負(fù)半軸上的點(diǎn)D繞頂點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,對(duì)應(yīng)點(diǎn)E恰好落在反比例函數(shù)y=kx的圖象上,若S△BDE=5,則三、計(jì)算題16.(1)化簡(jiǎn):(a+3)(a-3)+a(4-a)(2)解不等式組:x?3<14x?4≥x+2四、作圖題17.如圖,四邊形ABCD為正方形,點(diǎn)E在邊BC上.請(qǐng)僅用無(wú)刻度直尺完成以下作圖(保留作圖痕跡).(1)在圖1中,以AE為邊,在正方形ABCD內(nèi)作一個(gè)平行四邊形;(2)在圖2中,以AE為邊,在正方形ABCD內(nèi)作一個(gè)等腰三角形.五、解答題18.某學(xué)校為了豐富學(xué)生的體育活動(dòng),購(gòu)買了籃球和跳繩,已知每個(gè)籃球的價(jià)格是每個(gè)跳繩價(jià)格的3倍,購(gòu)買跳繩共花費(fèi)600元,購(gòu)買籃球共花費(fèi)900元,購(gòu)買跳繩和數(shù)量比購(gòu)買籃球的數(shù)量多20個(gè),求每個(gè)跳繩的價(jià)格.19.如圖,小華和同伴秋游時(shí),發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵小樹,他們想利用皮尺、傾角器和平面鏡測(cè)量小樹到山腳下的距離(即DE的長(zhǎng)度),昌昌站在點(diǎn)B處,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E.且測(cè)得BC=3米,CD=28米.∠CDE=127°.已知小華的眼睛到地面的距離AB=1.5米,請(qǐng)根據(jù)以上數(shù)據(jù),求DE的長(zhǎng)度.(參考數(shù)據(jù):sin37°20.如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,AC=CD=DB,21.現(xiàn)在,共享單車已遍布深圳街頭,其中較為常見的共享單車有“A.摩拜單車”、“B.小藍(lán)單車”、“C.OFO單車”、“D.小鳴單車”、“E.凡騎綠暢”等五種類型.為了解市民使用這些共享單車的情況,某數(shù)學(xué)興趣小組隨機(jī)統(tǒng)計(jì)部分正在使用這些單車的市民,并將所得數(shù)據(jù)繪制出了如下兩幅不完整的統(tǒng)計(jì)圖表(圖1、圖2):根據(jù)所給信息解答下列問(wèn)題:(1)此次統(tǒng)計(jì)的人數(shù)為人;根據(jù)已知信息補(bǔ)全條形統(tǒng)計(jì)圖;(2)在使用單車的類型扇形統(tǒng)計(jì)圖中,使用E型共享單車所在的扇形的圓心角為度;(3)據(jù)報(bào)道,深圳每天有約200余萬(wàn)人次使用共享單車,則其中使用E型共享單車的約有萬(wàn)人次.六、綜合題22.如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線B→A→C路線,以5cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)C停止,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿折線C→B→A路線,以4cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)A停止.點(diǎn)P,點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,以PQ為直徑作⊙O:(1)當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng),點(diǎn)Q在邊CB上運(yùn)動(dòng)時(shí),⊙O與BC相切,求t的值;(2)當(dāng)⊙O與AB相切時(shí),求t的值.23.如圖1,拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)E(m,0)(0<m<4),過(guò)點(diǎn)E作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M.(1)求a的值和直線AB的函數(shù)表達(dá)式;(2)設(shè)△PMN的周長(zhǎng)為C1,△AEN的周長(zhǎng)為C2,若C1(3)如圖2,在(2)條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接E′A、E′B,求E′A+23

答案1.A2.B3.A4.A5.C6.C7.C8.C9.C10.D11.(x?2)212.213.20;514.315.16.(1)解:原式=a2-9+4a-a2=4a-9(2)解:x?3<1①4x?4≥x+2②,由①得:x<4;由②則不等式組的解集為2≤x<417.(1)解:如圖(1)所示,連接AC,BD,過(guò)點(diǎn)E與AC,BD對(duì)角線的交點(diǎn)作EF交則四邊形AECF即為所求,(2)解:如圖(2)所示,等腰三角形AEM即為所求,在(1)的基礎(chǔ)上,記CF交BD于點(diǎn)H,連接AH并延交CD于點(diǎn)M,∵DH=DH,∴△ADH≌△CDH,∴∠DAM=∠FCD,∵∠CDF=∠ADM=90°,AD=CD,∴△ADM≌△CDF,則AM=CF,由(1)知CF=AE,AM=AE,連接EM,則△AEM即為所求.18.解:設(shè)每個(gè)跳繩的價(jià)格為x元.根據(jù)題意,得600解得x=15.經(jīng)檢驗(yàn),x=15是原方程的解,且符合題意.答:每個(gè)跳繩的價(jià)格為15元.19.解:如圖,過(guò)點(diǎn)E作EF⊥CD交CD延長(zhǎng)線于點(diǎn)F,∵∠CDE=127°,∴∠EDF=53°,∴∠DEF=37°,∴tan∠DEF=設(shè)DF為x米,則EF43x米,∴DE≈∵∠B=∠EFC=90°,∠ACB=∠ECD,∴△ABC∽△EFC,∴ABEF=BCFC,解得:x=28,∴DE的長(zhǎng)度為1403米.20.證明:連接OD,∵AC=CD=DB∵CD=∴∠EAD=∠DAB=1∵OA=OD,∴∠ADO=∠DAB=30°.∵DE⊥AC,∴∠E=90°.∴∠EAD+∠EDA=90°.∴∠EDA=60°.∴∠EDO=∠EDA+∠ADO=90°.∴OD⊥DE.∴DE是⊙O的切線.21.(1)300;(2)64.8(3)3622.(1)解:如圖示,當(dāng)⊙O與BC相切時(shí),QP⊥BC,則有PQ//AC,∴△BQP~△BCA,∴BPAB∵在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB=又∵動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線B→A→C路線,以5cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)C停止,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿折線C→B→A路線,以4cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)A停止,∴BP=5t,CQ=4t,∴BQ=BC?CQ=8?4t,∴5t10=∴t=1;(2)如下圖示,當(dāng)⊙O與AB相切時(shí),QP⊥AB.∴△QPB~△ACB,∴BPBC∴5t8∴t=3223.(1)解:將點(diǎn)A(4,16a+4(a+3)+3=0,解得a=?34∴B∵A(4,0),B(0,3),設(shè)直線AB解析式為y=kx+b,則b=34k+b=0,解得k=?∴直線AB解析式為y=?3(2)解:由題意可得:OA=4,OB=3,OE=m,則AB=5,AE=4?m如圖1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PN

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論