版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州三中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓()上點(diǎn)到直線的最小距離為1,則A.4 B.3C.2 D.12.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點(diǎn).直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面中,且都垂直于AB,已知,,,則()A. B.C. D.3.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥4.設(shè)實(shí)數(shù),滿足,則的最小值為()A.5 B.6C.7 D.85.已知斜三棱柱所有棱長(zhǎng)均為2,,點(diǎn)、滿足,,則()A. B.C.2 D.6.如圖,奧運(yùn)五環(huán)由5個(gè)奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍(lán)、黑、紅環(huán),下面是黃,綠環(huán),整個(gè)造形為一個(gè)底部小的規(guī)則梯形.為迎接北京冬奧會(huì)召開,某機(jī)構(gòu)定制一批奧運(yùn)五環(huán)旗,已知該五環(huán)旗的5個(gè)奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個(gè)相交的圓的圓心之間的距離為()A. B.2.8C. D.2.97.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學(xué)、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機(jī)選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.8.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.9.已知雙曲線,過點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.310.雙曲線的左右焦點(diǎn)分別是,,直線與雙曲線在第一象限的交點(diǎn)為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.11.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點(diǎn)M(x,y)的軌跡為()A. B.C. D.12.已知命題P:,,則命題P的否定為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn),且垂直于的直線方程為_______________.14.某單位現(xiàn)有三個(gè)部門競(jìng)崗,甲、乙、丙三人每人只競(jìng)選一個(gè)部門,設(shè)事件A為“三人競(jìng)崗部門都不同”,B為“甲獨(dú)自競(jìng)崗一個(gè)部門”,則______.15.已知某農(nóng)場(chǎng)某植物高度,且,如果這個(gè)農(nóng)場(chǎng)有這種植物10000棵,試估計(jì)該農(nóng)場(chǎng)這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.16.作邊長(zhǎng)為6的正三角形的內(nèi)切圓,半徑記為,在這個(gè)圓內(nèi)作內(nèi)接正三角形,然后再作新三角形的內(nèi)切圓.如此下去,第n個(gè)正三角形的內(nèi)切圓半徑記為,則______,現(xiàn)有1個(gè)半徑為的圓,2個(gè)半徑為的圓,……,個(gè)半徑為的圓,n個(gè)半徑為的圓,則所有這些圓的面積之和為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?18.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個(gè)零點(diǎn),,證明:20.(12分)已知圓:,定點(diǎn),Q為圓上的一動(dòng)點(diǎn),點(diǎn)P在半徑CQ上,且,設(shè)點(diǎn)P的軌跡為曲線E.(1)求曲線E的方程;(2)過點(diǎn)的直線交曲線E于A,B兩點(diǎn),過點(diǎn)H與AB垂直的直線與x軸交于點(diǎn)N,當(dāng)取最大值時(shí),求直線AB的方程.21.(12分)在數(shù)列中,,,且對(duì)任意的,都有.(1)數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列,求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù),且在處取得極值.(1)求的值;(2)當(dāng),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項(xiàng)是正確的.【點(diǎn)睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問題2、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進(jìn)一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進(jìn)而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因?yàn)椋?,又,所以是該二面角的一個(gè)平面角,即,由余弦定理.因?yàn)?,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.3、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因?yàn)?,所以,所以故選:A4、A【解析】作出不等式組的可行域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標(biāo)函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當(dāng)直線經(jīng)過點(diǎn)時(shí),直線的截距最小,則,故選:5、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運(yùn)算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D6、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點(diǎn),連接,所以,,又因?yàn)?,所以,所以即相鄰兩個(gè)相交的圓的圓心之間的距離為.故選:C7、A【解析】先由列舉法計(jì)算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機(jī)選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個(gè)基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個(gè)基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點(diǎn)睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.8、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對(duì)稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C9、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時(shí),與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時(shí),過點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點(diǎn)的直線方程為或,①當(dāng)斜率存在時(shí)有,得(*)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有:,即又方程(*)的兩個(gè)不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時(shí),方程①無實(shí)數(shù)解故過點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時(shí),經(jīng)過點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A10、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點(diǎn)為,∵直線與雙曲線在第一象限的交點(diǎn)在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負(fù)),故.故選:D.11、A【解析】已知,,2成等差數(shù)列,得到,化簡(jiǎn)得到【詳解】已知,,2成等差數(shù)列,得到,化簡(jiǎn)得到可知是焦點(diǎn)在x軸上的拋物線的一支.故答案為A.【點(diǎn)睛】這個(gè)題目考查的是對(duì)數(shù)的運(yùn)算以及化簡(jiǎn)公式的應(yīng)用,也涉及到了軌跡的問題,求點(diǎn)的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡(jiǎn)即可.12、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出,可得垂直于的直線的斜率為,再利用點(diǎn)斜式可得結(jié)果.【詳解】因?yàn)椋?,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點(diǎn)睛】對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡(jiǎn)單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.14、##0.5【解析】根據(jù)給定條件求出事件B和AB的概率,再利用條件概率公式計(jì)算作答.【詳解】依題意,,,所以.故答案:15、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計(jì)該農(nóng)場(chǎng)這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135916、①;②..【解析】設(shè)第n個(gè)三角形的邊長(zhǎng)為,進(jìn)而根據(jù)題意求出,然后根據(jù)等面積法求出,再求出;設(shè)n個(gè)半徑為的圓的面積為并求出,進(jìn)而運(yùn)用錯(cuò)位相減法求得答案.【詳解】如示意圖1,設(shè)第n個(gè)三角形的邊長(zhǎng)為,易得,則是以6為首項(xiàng),為公比的等比數(shù)列,所以.如示意圖2,易得:,,所以,所以.設(shè)n個(gè)半徑為的圓的面積為,則,記所有圓的面積之和為,則,所以,兩式相減得:,即.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.18、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點(diǎn)的橫坐標(biāo);中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性質(zhì)可得,∴(2)月平均用電量的眾數(shù)是,∵,月平均用電量的中位數(shù)在內(nèi),設(shè)中位數(shù)為,由,可得,∴月平均用電量的中位數(shù)為224考點(diǎn):頻率分布直方圖;中位數(shù);眾數(shù)19、(1)函數(shù)的單調(diào)性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導(dǎo)數(shù),按a值分類討論判斷的正負(fù)作答.(2)將分別代入計(jì)算化簡(jiǎn)變形,再對(duì)所證不等式作等價(jià)變形,構(gòu)造函數(shù),借助函數(shù)導(dǎo)數(shù)推理作答.【小問1詳解】已知函數(shù)的定義域?yàn)?,,?dāng)時(shí),恒成立,所以在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由,解得,由,解得,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,所以,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,不妨設(shè),則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調(diào)遞增,,,即成立,所以.【點(diǎn)睛】思路點(diǎn)睛:涉及雙變量的不等式證明問題,將所證不等式等價(jià)轉(zhuǎn)化,構(gòu)造新函數(shù),再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性、極(最)值問題處理.20、(1)(2)或【解析】(1)結(jié)合已知條件可得到點(diǎn)P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用弦長(zhǎng)公式求出,再設(shè)出直線NH的方程,求出N點(diǎn)坐標(biāo),進(jìn)而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)為,∵,∴點(diǎn)P在線段QF垂直平分線上,∴,又∵,∴∴點(diǎn)P在以C,F(xiàn)為焦點(diǎn)的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設(shè)直線AB方程為,,由,解得,,解得,由韋達(dá)定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設(shè)則∴當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,有最大值,此時(shí)滿足,故,所以直線AB的方程為:,即或.21、(1);(2).【解析】(1)由遞推式可得,根據(jù)等比數(shù)列的定義寫出通項(xiàng)公式,再由累加法求的通項(xiàng)公式;(2)由(1)可得,再應(yīng)用裂項(xiàng)相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國光伏逆變器產(chǎn)業(yè)發(fā)展趨勢(shì)規(guī)劃分析報(bào)告
- 2025年人教版七年級(jí)英語上冊(cè)階段測(cè)試試卷
- 2025-2030年中國中央廚房行業(yè)運(yùn)行動(dòng)態(tài)及投資發(fā)展前景預(yù)測(cè)報(bào)告
- 2025-2030年中國三溴氧磷市場(chǎng)競(jìng)爭(zhēng)格局與前景發(fā)展策略分析報(bào)告
- 2025-2030年中國PET保護(hù)膜市場(chǎng)競(jìng)爭(zhēng)格局展望及投資策略分析報(bào)告
- 二零二五年度高空廣告牌安裝及廣告內(nèi)容審查與效果跟蹤協(xié)議3篇
- 2025-2030年中國1,4丁二醇(BDO)市場(chǎng)發(fā)展動(dòng)態(tài)及前景趨勢(shì)分析報(bào)告
- 2025年牛津譯林版四年級(jí)數(shù)學(xué)上冊(cè)月考試卷
- 2024年邢臺(tái)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2025年滬教版選修2地理上冊(cè)階段測(cè)試試卷含答案
- CLSIM100-S24英文版 抗菌藥物敏感性試驗(yàn)執(zhí)行標(biāo)準(zhǔn);第二十四版資料增刊
- 空調(diào)作業(yè)規(guī)程3篇
- 物業(yè)項(xiàng)目服務(wù)進(jìn)度保證措施
- (隱蔽)工程現(xiàn)場(chǎng)收方計(jì)量記錄表
- DB22T 5005-2018 注塑夾芯復(fù)合保溫砌塊自保溫墻體工程技術(shù)標(biāo)準(zhǔn)
- 醫(yī)院手術(shù)室醫(yī)院感染管理質(zhì)量督查評(píng)分表
- 稱量與天平培訓(xùn)試題及答案
- 超全的超濾與納濾概述、基本理論和應(yīng)用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國育齡女性生殖健康研究報(bào)告
- 消防報(bào)審驗(yàn)收程序及表格
評(píng)論
0/150
提交評(píng)論