2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題含解析_第1頁
2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題含解析_第2頁
2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題含解析_第3頁
2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題含解析_第4頁
2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆北京市西城區(qū)41中高二數學第一學期期末聯考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.2.已知數列為等差數列,若,則()A.1 B.2C.3 D.43.已知為坐標原點,向量,點,.若點在直線上,且,則點的坐標為().A. B.C. D.4.數學家歐拉在1765年發(fā)現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.5.設實數x,y滿足約束條件則的最小值()A.5 B.C. D.86.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.7.已知等差數列的前項和為,,,當取最大時的值為()A. B.C. D.8.某地為應對極端天氣搶險救災,需調用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調用卡車的數量為()A.7 B.9C.13 D.149.△ABC的兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.10.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.11.對于函數,下列說法正確的是()A.的單調減區(qū)間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則12.已知曲線,則“”是“C為雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設公差的等差數列的前項和為,已知,且,,成等比數列,則的最小值為______14.設有下列命題:①當,時,不等式恒成立;②函數在上的最小值為2;③函數在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)15.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.16.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經過點,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線.(1)若,求直線與直線交點坐標;(2)若直線與直線垂直,求a的值.18.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.19.(12分)已知圓C:(1)若點,求過點的圓的切線方程;(2)若點為圓的弦的中點,求直線的方程20.(12分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F分別為PC,BD的中點,側面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.21.(12分)已知函數(1)求函數的單調區(qū)間;(2)求函數在區(qū)間上的值域22.(10分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A2、D【解析】利用等差數列下標和的性質求值即可.【詳解】由等差數列下標和性質知:.故選:D3、A【解析】由在直線上,設,再利用向量垂直,可得,進而可求E點坐標.【詳解】因為在直線上,故存在實數使得,.若,則,所以,解得,因此點的坐標為.故選:A.【定睛】本題考查了空間向量的共線和數量積運算,考查了運算求解能力和邏輯推理能力,屬于一般題目.4、A【解析】設,計算出重心坐標后代入歐拉方程,再求出外心坐標,根據外心的性質列出關于的方程,最后聯立解方程即可.【詳解】設,由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯立,解得的外心為則,整理得:②聯立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關鍵點睛:解決本題的關鍵一是求出外心,二是根據外心的性質列方程.5、B【解析】做出,滿足約束條件的可行域,結合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經過點時有最小值,由得,所以的最小值為.故選:B.6、D【解析】求得,根據的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關計算,屬于中檔題.7、B【解析】由已知條件及等差數列通項公式、前n項和公式求基本量,再根據等差數列前n項和的函數性質判斷取最大時的值.【詳解】令公差為,則,解得,所以,當時,取最大值.故選:B8、B【解析】畫出約束條件的可行域,利用目標函數的幾何意義即可求解【詳解】設調用卡車的數量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當目標函數經過時,縱截距最大,最大.故選:B9、D【解析】根據三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.10、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設外接圓的半徑為,由正統定理得,,所以,所以外接圓的面積是.故選:B.11、B【解析】函數,,,,,利用導數研究函數的單調性以及極值,畫出圖象A.結合圖象可判斷出正誤;B.設函數的值域為,函數,的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數在單調遞減,可得函數在單調遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數,,,,可得函數在上單調遞減,在上單調遞減,在上單調遞增,當時,,由此作出函數的大致圖象,如圖示:A.由上述分析結合圖象,可得A不正確B.設函數的值域為,函數,的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數在單調遞減,可得函數在單調遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結合圖象可知,因此D不正確故選:B12、A【解析】根據充分必要條件的定義,以及雙曲線的標準方程進行判斷可得選項【詳解】解:當時,表示雙曲線,當表示雙曲線時,則,所以“”是“C為雙曲線”的充分不必要條件.故選A二、填空題:本題共4小題,每小題5分,共20分。13、##0.4【解析】應用等比中項的性質及等差數列通項公式求公差d,進而寫出等差數列的通項公式、前n項和公式,再求目標式的最小值.【詳解】由題設,,則,整理得,又,解得,故,,所以,故當時目標式有最小值為.故答案為:14、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設,,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當且僅當時取等號,所以①正確;,當且僅當,即時取等號,由于,所以②不正確;因為,所以,當且僅當時取等號,而,即函數的最大值為,所以③正確;設,,則,,,,,所以,當且僅當,時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數;(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉化成定值;要求積的最大值,則必須把構成積的因式的和轉化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.15、【解析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:16、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設雙曲線:,,不妨設為雙曲線右支上一點因為線段的垂直平分線恰好經過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)聯立兩直線方程,解方程組即可得解;(2)根據兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當時,直線,聯立,解得,即交點坐標為;【小問2詳解】解:直線與直線垂直,則,解得.18、(1)證明見解析(2)【解析】(1)通過構造平行四邊形,在平面中找到即可證明(2)建立直角坐標系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明:設為的中點,連接,,因為,分別為,的中點.所以且,又,為的中點,所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問2詳解】取的中點,連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點,∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標系,則,,,,,,,,.設為平面的一個法向量,則有即取可取,設為平面的一個法向量,則有即可取,所以,設平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.19、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據圓心與弦中點的連線垂直線,可求出直線的斜率,進而求出結果.【小問1詳解】解:由題意知圓心的坐標為,半徑,當過點的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點的圓的切線方程為或【小問2詳解】解:∵圓心,,即,又,∴,則.20、(1)見解析(2)【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的綜合問題.培養(yǎng)了同學們的推理論證能力和計算能力(1)根據已知的條件關鍵是分析出EF//PA,利用線面平行判定定理得到(2)根據上一問中的結論可知PM⊥平面ABCD.然后利用轉換頂點的思想求解棱錐的體積解:(Ⅰ)證明:連接AC,則F是AC的中點,E為PC的中點,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中點M,連接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=21、(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2)【解析】(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間即可;(2)根據函數的單調性求出函數的極值點,從而求出函數的最值即可【詳解】解:(1)由題意得,,令,得,令,得或,故函數的單調遞增區(qū)間為,單調遞減區(qū)間為(2)易知,因為,所以(或由,可得),又當時,,所以函數在區(qū)間上的值域為【點睛】確定函數單調區(qū)間的步驟:第一步,確定函數的定義域;第二步,求;第三步,解不等式,解集在定義域內的部分為單調遞增區(qū)間;解不等式,解集在定義域內的部分為單調遞減區(qū)間22、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質定理即可證明;(2)以A為原點,AB,AC,AP分別為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論