甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第1頁
甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第2頁
甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第3頁
甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第4頁
甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省靜寧一中2023年數(shù)學高二上期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.2.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.43.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形4.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.5.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.7.已知等差數(shù)列滿足,則其前10項之和為()A.140 B.280C.68 D.568.中,,,分別為三個內角,,的對邊,若,,,則()A. B.C. D.9.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或10.已知點,Q是圓上的動點,則線段長的最小值為()A.3 B.4C.5 D.611.在數(shù)列中,,,則()A. B.C. D.12.兩位同學課余玩一種類似于古代印度的“梵塔游戲”:有3個柱子甲、乙、丙,甲柱上有個盤子,最上面的兩個盤子大小相同,從第二個盤子往下大小不等,大的在下,小的在上(如圖).把這個盤子從甲柱全部移到乙柱游戲結束,在移動的過程中每次只能移動一個盤子,甲、乙、丙柱都可以利用,且3個柱子上的盤子始終保持小的盤子不能放在大的盤子之下.設游戲結束需要移動的最少次數(shù)為,則當時,和滿足A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集是,則的值是___________.14.已知函數(shù),若有兩個零點,則的范圍是______15.在平面直角坐標系中,已知雙曲線的左,右焦點分別為,,過且與圓相切的直線與雙曲線的一條漸近線相交于點(點在第一象限),若,則雙曲線的離心率___________.16.若,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新冠肺炎疫情期間,某地為了解本地居民對當?shù)胤酪吖ぷ鞯臐M意度,從本地居民中隨機抽取了1500名居民進行評分(滿分100分),根據(jù)調查數(shù)據(jù)制成如下表格和頻率分布直方圖.滿意度評分滿意度等級不滿意基本滿意滿意非常滿意(1)求a的值;(2)定義滿意度指數(shù),若,則防疫工作需要進行調整,否則不需要調整,根據(jù)所學知識判斷該區(qū)防疫工作是否需要進行調整?18.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調區(qū)間;(2)若,討論函數(shù)零點個數(shù)19.(12分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.20.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分21.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.22.(10分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標,若不存在說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D2、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.3、C【解析】根據(jù)三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.4、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設出等差數(shù)列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設的首項為,公差為,則有:則有:,故選項D正確故選:D5、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A6、D【解析】構造,結合已知有在R上遞增且,原不等式等價于,利用單調性求解集.【詳解】令,由題設知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D7、A【解析】根據(jù)等差數(shù)列的性質,可得,結合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據(jù)等差數(shù)列的性質,可得,所以數(shù)列的前10項和為.故選:A.8、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.9、C【解析】根據(jù)點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.10、A【解析】根據(jù)圓的幾何性質轉化為圓心與點的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點在線段上時,,故選:A11、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.12、C【解析】通過寫出幾項,尋找規(guī)律,即可得到和滿足的遞推公式.【詳解】若甲柱有個盤,甲柱上的盤從上往下設為,其中,,當時,將移到乙柱,只移動1次;當時,將移到乙柱,將移到乙柱,移動2次;當時,將移到丙柱,將移到丙柱,將移到乙柱,再將移到乙柱,將移到乙柱,;當時,將上面的3個移到丙柱,共次,然后將移到乙柱,再將丙柱的3個移到乙柱,共次,所以次;當時,將上面的4個移到丙柱,共次,然后將移到乙柱,再將丙柱的4個移到乙柱,共次,所以次;……以此類推,可知,故選.【點睛】主要考查了數(shù)列遞推公式的求解,屬于中檔題.這類型題的關鍵是寫出幾項,尋找規(guī)律,從而得到對應的遞推公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用和是方程的兩根,再利用根與系數(shù)的關系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關系可得:,所以,所以,故答案為:14、【解析】利用導數(shù)求出函數(shù)的最小值,結合函數(shù)的圖象列式可求出結果.【詳解】,當時,,在上為增函數(shù),最多只有一個零點,不符合題意;當時,令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時取得極小值為,也是最小值,因為當趨近于正負無窮時,都是趨近于正無窮,所以要使有兩個零點,只要,即就可以了.所以的范圍是故答案為:.15、2【解析】設切點,根據(jù),可得,在中,利用余弦定理構造齊次式,從而可得出答案.【詳解】解:設切點,由,∴,∵為中點,則為中位線,∴,,中,,,,∴.故答案為:2.16、【解析】分別令和,再將兩個等式相加可求得的值.【詳解】令,則;令,則.上述兩式相加得故答案為:.【點睛】本題考查偶數(shù)項系數(shù)和的計算,一般令和,通過對等式相加減求得,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)不需要【解析】(1)直接根據(jù)頻率和為1計算得到答案.(2)計算平均值得到得到答案.【小問1詳解】,解得.【小問2詳解】.故不需要進行調整.18、(1)單調遞減區(qū)間為,單調遞增區(qū)間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數(shù)大于零求增區(qū)間,令導數(shù)小于零求減區(qū)間;(2)求導數(shù),分、、a>2討論函數(shù)f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區(qū)間為,單調遞增區(qū)間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用19、(1)見解析(2)【解析】(1)連接交于點,連接,由中位線定理結合線面平行的判定證明即可;(2)由得出點到平面的距離,再由是的中點,得出點到平面的距離.【小問1詳解】連接交于點,連接.因為分別是的中點,所以.又平面EBD,平面EBD,所以平面EBD;【小問2詳解】過點作的垂線,垂足為,連接.因為平面平面ABCD,平面平面ABCD,所以平面ABCD,所以,設點到平面的距離為因為,所以,因為點是的中點,所以點到平面的距離為.20、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因為,,所以是首項為1,公差為1的等差數(shù)列則,從而當時,,經(jīng)檢驗,當時,也符合上式.所以選②.因為是與的等比中項所以,當時,,兩式相減得,整理得,所以,經(jīng)檢驗,也符合上式,所以選③.由題設,得,兩式相減,得,整理,得,因為.所以,所以是首項為1,公差為2的等差數(shù)列,所以【小問2詳解】由(1)知,,所以,所以,則兩式相減,得,所以21、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導,根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構造一個關于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導數(shù)研究函數(shù)在上的單調性,比較極值和端點值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域為,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調遞減單調遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內的最值問題,考查利用導函數(shù)研究函數(shù)在給定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論