




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省名校2023年高二上數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則實數(shù)等于()A1 B.2C. D.2.意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個有趣的數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,……,這就是著名的斐波那契數(shù)列,該數(shù)列的前2022項中有()個奇數(shù)A.1012 B.1346C.1348 D.13503.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品4.已知等差數(shù)列共有項,其中奇數(shù)項之和為290,偶數(shù)項之和為261,則的值為()A.30 B.29C.28 D.275.已知是空間的一個基底,若,,若,則()A. B.C.3 D.6.已知是空間的一個基底,若,,若,則()A B.C.3 D.7.已知關(guān)于的不等式的解集是,則的值是()A B.5C. D.78.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標(biāo)原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.39.在數(shù)列中,,則的值為()A. B.C. D.以上都不對10.若向量,,,則()A. B.C. D.11.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.12.直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若三個數(shù)成等差數(shù)列,則_________;若三個數(shù)成等比數(shù)列,則__________14.已知的展開式中項的系數(shù)是,則正整數(shù)______________.15.函數(shù),則函數(shù)在處切線的斜率為_______________.16.在下列三個問題中:①甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,如果規(guī)定:同時出現(xiàn)正面或反面算甲勝,一個正面、一個反面算乙勝,那么這個游戲是公平的;②擲一枚骰子,估計事件“出現(xiàn)三點”的概率,當(dāng)拋擲次數(shù)很大時,此事件發(fā)生的頻率接近其概率;③如果氣象預(yù)報1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正確的是___________.(用序號表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點的個數(shù),并說明理由18.(12分)如圖,在空間四邊形中,分別是的中點,分別是上的點,滿足.(1)求證:四點共面;(2)設(shè)與交于點,求證:三點共線.19.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設(shè)線段中點為,坐標(biāo)原點為,求的面積的最大值.20.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標(biāo)準(zhǔn)方程.21.(12分)已知拋物線C:x2=4y的焦點為F,過F的直線與拋物線C交于A,B兩點,點M在拋物線C的準(zhǔn)線上,MF⊥AB,S△AFM=λS△BFM(1)當(dāng)λ=3時,求|AB|的值;(2)當(dāng)λ∈[]時,求|+|的最大值22.(10分)(1)已知:函數(shù)有零點;:所有的非負(fù)整數(shù)都是自然數(shù).若為假,求實數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用空間向量垂直的坐標(biāo)表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C2、C【解析】由斐波那契數(shù)列的前幾項分析該數(shù)列的項的奇偶規(guī)律,由此確定該數(shù)列的前2022項中的奇數(shù)的個數(shù).【詳解】由已知可得為奇數(shù),為奇數(shù),為偶數(shù),因為,所以為奇數(shù),為奇數(shù),為偶數(shù),…………所以為奇數(shù),為奇數(shù),為偶數(shù),又故該數(shù)列的前2022項中共有1348個奇數(shù),故選:C.3、C【解析】利用對立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對立事件的定義,事件=“至少有一件次品”其對立事件為:“兩件正品”,即”沒有次品“故選:C4、B【解析】由等差數(shù)列的求和公式與等差數(shù)列的性質(zhì)求解即可【詳解】奇數(shù)項共有項,其和為,∴偶數(shù)項共有n項,其和為,∴故選:B5、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C6、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因為,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C7、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D8、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B9、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項,從而發(fā)現(xiàn)數(shù)列的周期性的特點,進而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點,屬于基礎(chǔ)題.10、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A11、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B12、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.4②.【解析】由等差中項與等比中項計算即可.【詳解】若a,b,c三個數(shù)成等差數(shù)列.所以.若a,b,c三個數(shù)成等比數(shù)列.所以故答案為:4,.14、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設(shè),,∴,則且為正整數(shù),解得.故答案為:4.15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:因為,所以,所以,所以函數(shù)在處切線的斜率為故答案為:16、①②【解析】以甲乙獲勝概率是否均為來判斷游戲是否公平,并以此來判斷①的正確性;以頻率和概率的關(guān)系來判斷②③的正確性.【詳解】①中:甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,可得4種可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)則“同時出現(xiàn)正面或反面”的概率為,“一個正面、一個反面”的概率為即甲乙二人獲勝的概率均為,那么這個游戲是公平的.判斷正確;②中:“擲一枚骰子出現(xiàn)三點”是一個隨機事件,當(dāng)拋擲次數(shù)很大時,此事件發(fā)生的頻率會穩(wěn)定于其概率值,故此事件發(fā)生的頻率接近其概率.判斷正確;③中:氣象預(yù)報1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出現(xiàn)下雨的天數(shù)是隨機的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判斷錯誤.故答案為:①②三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0(2)f(x)在(0,π)上有且只有一個零點,理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當(dāng)時,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因為g(0)=0,所以g(x)在上無零點;②當(dāng)時,令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因為,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因為,g(π)=-π<0,所以g(x)在上且只有一個零點;綜上所述:f(x)在(0,π)上有且只有一個零點18、(1)證明見解析(2)證明見解析【解析】【小問1詳解】連接AC,分別是的中點,.在中,,所以四點共面.【小問2詳解】,所以,又平面平面,同理平面,為平面與平面的一個公共點.又平面平面,即三點共線.19、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點和的坐標(biāo),求直線方程判斷定點即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因為,所以設(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時,,所以直線的方程為:,整理得,此時直線過定點;當(dāng)時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時等號成立,故的面積的最大值為:.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題20、(1),(2)【解析】(1)根據(jù)已知條件建立關(guān)于a、b、c的方程組可解;(2)巧設(shè)與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯(lián)立上述方程,解得,,即,.【小問2詳解】設(shè)所求雙曲線的方程為,由雙曲線經(jīng)過點,得,即.所以雙曲線的方程為,其標(biāo)準(zhǔn)方程為.21、(1)(2)【解析】(1)由面積之比可得向量之比,設(shè)直線AB的方程,與拋物線的方程聯(lián)立求出兩根之和及兩根之積,與向量的關(guān)系可得的A,B的橫坐標(biāo)的關(guān)系聯(lián)立求出直線AB的斜率,再由拋物線的性質(zhì)可得焦點弦的值;(2)由(1)的解法類似的求出AB的中點N的坐標(biāo),可得直線AB的斜率與λ的關(guān)系,再由λ的范圍,求出直線AB的斜率的范圍,由題意設(shè)直線MF的方程,令y=﹣1求出M的橫坐標(biāo),進而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小問1詳解】當(dāng)λ=3時,即S△AFM=3S△BFM,由題意可得=3,因為拋物線C:x2=4y的焦點為F(1,0),準(zhǔn)線方程為y=﹣1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,聯(lián)立,整理可得:x2﹣4kx﹣4=0,顯然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,則(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③聯(lián)立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由拋物線的性質(zhì)可得|AB|=y(tǒng)1+y2+2=4×+2=,所以|AB|的值為;【小問2詳解】由(1)可得AB中點N(2k,2k2+2),由=λ,則x1=﹣λx2④,同(1)的算法:①②④聯(lián)立4k2λ=(1﹣λ)2,因為λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],則函數(shù)y先減后增,所以λ=2或時,y最大且為2+,此時4k2最大,且為,所以k2的最大值為:,直線MF的方程為:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因為|+|=2||,而|NM|=|2k2+2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年項目生命周期管理試題及答案
- 軟件設(shè)計師考試注意事項筆記試題及答案
- 上岸之路2025年法學(xué)概論考試試題及答案
- 2025年軟考設(shè)計師問題總結(jié)試題及答案
- 風(fēng)險管理方案的實施與評估試題及答案
- 網(wǎng)絡(luò)故障快速恢復(fù)技巧與配置試題及答案
- 2024年四川省工商局下屬事業(yè)單位真題
- 財務(wù)工作中的倫理與責(zé)任計劃
- 2024年南陽職業(yè)學(xué)院輔導(dǎo)員考試真題
- 員工滿意度調(diào)查的設(shè)計與分析計劃
- 排水管網(wǎng)檢測投標(biāo)方案(技術(shù)標(biāo))
- 市政道路土石方施工方案97723
- 臨床診療指南癲癇病學(xué)分冊
- PI形式發(fā)票范文模板
- DB41-T 2437-2023 養(yǎng)老機構(gòu)院內(nèi)感染預(yù)防與控制規(guī)范
- (PQCDSM)生產(chǎn)現(xiàn)場改善與安全生產(chǎn)管理
- 中外貨物買賣合同FOB條款
- 2022年05月四川省度綿陽市公開遴選公務(wù)員考試參考題庫答案詳解
- T-ZAQ 10116-2023 新時代基層理論宣講0576 工作法操作規(guī)范
- (完整word版)新《中華頌》朗誦稿
- 帶電工作絕緣手套CE認(rèn)證EN 60903
評論
0/150
提交評論