廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁(yè)
廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁(yè)
廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁(yè)
廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁(yè)
廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西桂林市龍勝中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)M在圓上,點(diǎn)N在直線上,則|MN|的最小值是()A. B.C. D.12.若直線與曲線有公共點(diǎn),則b的取值范圍是()A. B.C. D.3.已知拋物線,過拋物線的焦點(diǎn)作軸的垂線,與拋物線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,且為直角三角形,則以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.4.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.5.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.66.的展開式中的系數(shù)是()A.1792 B.C.448 D.7.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個(gè)舉辦過夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.根據(jù)安排,國(guó)家體育場(chǎng)(鳥巢)成為北京冬奧會(huì)開、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個(gè)“相似橢圓”(離心率相同的兩個(gè)橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長(zhǎng)軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.8.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.9.已知數(shù)列滿足,,則的最小值為()A. B.C. D.10.已知實(shí)數(shù)a,b,c滿足,,則a,b,c的大小關(guān)系為()A. B.C. D.11.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件12.過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為()A. B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.光線從橢圓的一個(gè)焦點(diǎn)發(fā)出,被橢圓反射后會(huì)經(jīng)過橢圓的另一個(gè)焦點(diǎn);光線從雙曲線的一個(gè)焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)射出.如圖,一個(gè)光學(xué)裝置由有公共焦點(diǎn)的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點(diǎn)發(fā)出,依次經(jīng)與反射,又回到了點(diǎn),歷時(shí)秒;若將裝置中的去掉,此光線從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時(shí)秒;若,則與的離心率之比為________14.1202年意大利數(shù)學(xué)家列昂那多-斐波那契以兔子繁殖為例,引人“兔子數(shù)列”,又稱斐波那契數(shù)列.即該數(shù)列中的數(shù)字被人們稱為神奇數(shù),在現(xiàn)代物理,化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.若此數(shù)列各項(xiàng)被3除后的余數(shù)構(gòu)成一新數(shù)列,則數(shù)列的前2022項(xiàng)的和為________.15.圓心在x軸上且過點(diǎn)的一個(gè)圓的標(biāo)準(zhǔn)方程可以是______16.已知橢圓的右頂點(diǎn)為,直線與橢圓交于兩點(diǎn),若,則橢圓的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)唐代詩(shī)人李頎的詩(shī)《古從軍行》開頭兩句說:“白日登上望烽火,黃昏飲馬傍交河,”詩(shī)中隱含著一個(gè)有趣的“將軍飲馬”問題,這是一個(gè)數(shù)學(xué)問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營(yíng),怎樣走才能使得總路程最短?在平面直角坐標(biāo)系中,將軍從點(diǎn)處出發(fā),河岸線所在直線方程為,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即為回到軍營(yíng).軍營(yíng)所在區(qū)域可表示為.(1)求“將軍飲馬”的最短總路程;(2)因軍情緊急,將軍來不及飲馬,直接從A點(diǎn)沿傾斜角為45°的直線路徑火速回營(yíng),已知回營(yíng)路徑與軍營(yíng)邊界的交點(diǎn)為M,N,軍營(yíng)中心與M,N連線的斜率分別為,,試求的值.18.(12分)已知橢圓:的一個(gè)焦點(diǎn)坐標(biāo)為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個(gè)不同的點(diǎn)A、B,線段AB的中點(diǎn)為M.若直線OM的斜率為-1,求線段AB的長(zhǎng);(3)如圖,設(shè)橢圓上一點(diǎn)R的橫坐標(biāo)為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點(diǎn)、若直線PR與QR的傾斜角互補(bǔ),求直線PQ的斜率的所有可能值組成的集合.19.(12分)已知函數(shù)(1)求關(guān)于x的不等式的解集;(2)若對(duì)任意的,恒成立,求實(shí)數(shù)a的取值范圍20.(12分)已知直線,圓.(1)若l與圓C相切,求切點(diǎn)坐標(biāo);(2)若l與圓C交于A,B,且,求的面積.21.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值22.(10分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.2、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點(diǎn)問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡(jiǎn)為即表示以為圓心,以2為半徑的一個(gè)半圓,如圖所示:當(dāng)直線經(jīng)過時(shí)最大,即,當(dāng)直線與下半圓相切時(shí)最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.3、B【解析】設(shè)點(diǎn)位于第一象限,求得直線的方程,可得出點(diǎn)的坐標(biāo),由拋物線的對(duì)稱性可得出,進(jìn)而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.【詳解】設(shè)點(diǎn)位于第一象限,直線的方程為,聯(lián)立,可得,所以,點(diǎn).為等腰直角三角形,由拋物線的對(duì)稱性可得出,則直線的斜率為,即,解得.因此,以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查拋物線標(biāo)準(zhǔn)方程的求解,考查計(jì)算能力,屬于中等題.4、A【解析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷5、C【解析】根據(jù)焦半徑公式即可求出【詳解】因?yàn)?,所以,所以故選:C6、D【解析】根據(jù)二項(xiàng)式展開式的通項(xiàng)公式計(jì)算出正確答案.【詳解】的展開式中,含的項(xiàng)為.所以的系數(shù)是.故選:D7、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.8、C【解析】根據(jù)給定條件求出即可計(jì)算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長(zhǎng)半軸長(zhǎng),所以橢圓離心率.故選:C9、C【解析】采用疊加法求出,由可得,結(jié)合對(duì)勾函數(shù)性質(zhì)分析在或6取到最小值,代值運(yùn)算即可求解.【詳解】因?yàn)椋?,,,,式相加可得,所以,,?dāng)且僅當(dāng)取到,但,,所以時(shí),當(dāng)時(shí),,,所以的最小值為.故選:C10、A【解析】利用對(duì)數(shù)的性質(zhì)可得,,再構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷,再構(gòu)造,利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再由單調(diào)性即可求解.【詳解】由題意可得均大于,因?yàn)?,所以,所以,且,令,,?dāng)時(shí),,所以在單調(diào)遞增,所以,所以,即,令,,當(dāng)時(shí),,所以在上單調(diào)遞減,由,,所以,所以,綜上所述,.故選:A11、A【解析】根據(jù)充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過來,若,可推出.故“”是“”的充分不必要條件故選:A.12、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為橢圓的通徑:故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##0.75【解析】根據(jù)橢圓和雙曲線定義用長(zhǎng)半軸長(zhǎng)和實(shí)半軸長(zhǎng)表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因?yàn)椋?,即所?故答案為:14、【解析】由數(shù)列各項(xiàng)除以3的余數(shù),可得為,知是周期為8的數(shù)列,即可求出數(shù)列的前2022項(xiàng)的和.【詳解】由數(shù)列各項(xiàng)除以3的余數(shù),可得為,是周期為8的數(shù)列,一個(gè)周期中八項(xiàng)和為,又,數(shù)列的前2022項(xiàng)的和.故答案為:.15、【解析】確定x軸上一個(gè)點(diǎn)做圓心,求出半徑,再寫出圓的標(biāo)準(zhǔn)方程即可.【詳解】以x軸上的點(diǎn)為圓心,則半徑,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:16、【解析】求出右頂點(diǎn)坐標(biāo),然后推出的縱坐標(biāo),利用已知條件列出方程,求解橢圓的離心率即可【詳解】解:橢圓的右頂點(diǎn)為,直線與橢圓交于,兩點(diǎn),若,可知,不妨設(shè)在第一象限,所以的縱坐標(biāo)為:,可得:,即,可得,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意作出圖形,然后求出關(guān)于直線的對(duì)稱點(diǎn),進(jìn)而根據(jù)圓的性質(zhì)求出到圓上的點(diǎn)的最短距離即可;(2)將直線方程代入圓的方程并化簡(jiǎn),進(jìn)而結(jié)合韋達(dá)定理求得答案.【小問1詳解】若軍營(yíng)所在區(qū)域?yàn)?,圓:的圓心為原點(diǎn),半徑為,作圖如下:設(shè)將軍飲馬點(diǎn)為,到達(dá)營(yíng)區(qū)點(diǎn)為,設(shè)為A關(guān)于直線的對(duì)稱點(diǎn),因?yàn)?,所以線段的中點(diǎn)為,則,又,聯(lián)立解得:,即,所以總路程,要使得總路程最短,只需要最短,即點(diǎn)到圓上的點(diǎn)的最短距離,即為.【小問2詳解】過點(diǎn)A傾斜角為45°的直線方程為:,設(shè)兩個(gè)交點(diǎn),聯(lián)立,消去y得.由韋達(dá)定理,,.18、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長(zhǎng)半軸長(zhǎng)a即可計(jì)算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計(jì)算出AB的長(zhǎng).(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點(diǎn)P坐標(biāo),同理可得點(diǎn)Q坐標(biāo),計(jì)算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點(diǎn),直線OM斜率為,解得,因此,,所以線段AB的長(zhǎng)為.【小問3詳解】由(1)知,點(diǎn),依題意,設(shè)直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設(shè)點(diǎn),則有,顯然直線QR的斜率為-t,設(shè)點(diǎn),同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出a,b;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在x軸上和y軸上兩種情況討論.19、(1)答案見解析(2)【解析】(1)求出對(duì)應(yīng)方程的根,再根據(jù)根的大小進(jìn)行討論,即可得解;(2)對(duì)任意的,恒成立,即恒成立,結(jié)合基本不等式求出的最小值即可得解.【小問1詳解】解:由已知易得即為:,令可得與,所以,當(dāng)時(shí),原不等式的解集為;當(dāng)時(shí),原不等式的解集為;當(dāng)時(shí),原不等式的解集為;【小問2詳解】解:由可得,由,得,所以可得,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以,所以的取值范圍是.20、(1)(2)【解析】(1)求出直線的定點(diǎn),再由定點(diǎn)在圓上得出切點(diǎn)坐標(biāo);(2)由(1)知,證明為直角三角形,求出,,最后由三角形的面積公式求出的面積.【詳解】(1)圓可化為直線可化為,由解得即直線過定點(diǎn),由于,則點(diǎn)在圓上因?yàn)閘與圓C相切,所以切點(diǎn)坐標(biāo)為(2)因?yàn)閘與圓C交于A,B,所以點(diǎn)如下圖所示,與相交于點(diǎn),由以及圓的對(duì)稱性可知,點(diǎn)為的中點(diǎn),且由,則直線的方程為圓心到直線的距離為,即直線與圓相切即,則因?yàn)?,所以【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是先確定直線過定點(diǎn),再由定點(diǎn)在圓上,從而確定切點(diǎn)的坐標(biāo).21、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論